Micromechanical Design of Novel Thermal Composites for Temperature Dependent Thermal Conductivity

Raj C Thiagarajan, PhD
ATOA Scientific Technologies Pvt Ltd

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore
ATOA

• Engineering Design Solution Provider
 • CAE (cae.atoa.com)
 • Multiphysics
 • Multimaterial
 • Multiscale
 • 3D Printing (3d.atoa.com)
 • Engineering Apps (apps.atoa.com)

• Material Unity Vision: To solve complex problem of our clients

• 1st COMSOL Certified Consultant from India
Introduction

- Material with an order variable in thermal conductivity as a function of temperature is desirable for thermoelectric heat energy recovery, building thermal insulation and solar thermal applications.

- Micromechanics + Thermal Conduction

- Thermal + Structural

- Focus is on the commercially available constituent materials

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore
Micromechanics

• Continuum Micromechanics based on homogenization theory
 – Aims at finding a volume elements (Representative Volume Element – RVE, periodic Micro field- PMA) response to prescribed mechanical loads.

 – Prediction of macro properties from micro structure and constituents.

Localization relationship

Micro fields
\[\varepsilon(x) = A(x) \langle \varepsilon \rangle \]

Macro fields
\[\sigma(x) = B(x) \langle \sigma \rangle \]

Homogenization relationship

\[\langle \varepsilon \rangle = \frac{1}{\Omega_s} \int_{\Omega_s} \varepsilon(x) \, d\Omega = \frac{1}{2\Omega_s} \int_{\Gamma_s} (u(x) \otimes n_{\Gamma} + n_{\Gamma} \otimes u(x)) \, d\Gamma \]

\[\langle \sigma \rangle = \frac{1}{\Omega_s} \int_{\Omega_s} \sigma(x) \, d\Omega = \frac{1}{\Omega_s} \int_{\Gamma_s} t(x) \otimes x \, d\Gamma \]

Where,
\(\Omega \) – volume, \(\Gamma \) -surface,
\(u(x) \) – deformation vector
\(t(x) \) – surface traction vector
\(n_{\Gamma} \) – surface normal vector
Numerical Implementation

• Periodic boundary condition
 • \(u_{xl} = u_{x0} + e_x \)
 • \(v_{yl} = u_{y0} + e_y \)

• Global (macro) vs local (micro) stress and strain
 – Integration of variables
 – Coupled Thermal + Structural

• Parametric model to predict the Thermo Elastic property prediction

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore
Simulation Results

- Thermo elastic
- Micromechanical model
 - Vf
 - Constituent Properties
- Differential Thermal Expansion
- Thermal Expansion = Changes in morphology
- Insulator to conductor Transition
Simulation Results

- Thermal conductivity (predicted as per ASTM standard)
 - At room temperature: (~22 °C)
 - \((11.73) \text{ W/m} \cdot \text{K}\)
 - At Service Temperature (~100°C)
 - \((92.57) \text{ W/m} \cdot \text{K}\)

- 1 order/10X change in Thermal conductivity wrt Temperature

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore
Conclusions

• Novel Composite material Design
• Engineered Thermal conductivity
• DoE with commercially available materials.
• Next steps
 – Optimization for product application
 – Waste heat recovery
 – Solar Thermal