# Design and Analysis of Fluid Structure Interaction for Elbow Shaped Micro Piping System



Department of Control Systems, St. Mary's Group of Institutions- Hyderabad, Affiliated to Jawaharlal Nehru Technological University Kukatpally, Hyderabad-50085, Telangana, India.

COMSO

ONFERENCE

2014 BANGALORE

## CONTENTS

## 1. FLUID STRUCTURE INTERACTION

## 2. COMSOL MULTIPHYSICS

## 3. DESIGN PROCESS

4. SIMULATION

## 5. RESULTS

6. CONCLUSION

#### 1. FLUID STRUCTURE INTERACTION



#### Problems of FSI:

- ≻Inelasticity,
- ≻Noise generation,
- ≻Nonlinear response,
- ≻Flow induced vibrations,
- ≻New path for the flowing fluid,
- ≻Change in boundary conditions,
- Expansion or Contraction in pipe line.



#### 2. COMSOL MULTIPHYSICS

COMSOL Multiphysics computes new mesh coordinates on the channel area based on the movement of the structure's boundaries and mesh smoothing.



## **3. DESIGN PROCESS**



Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

1300

320

## 4. SIMULATION

> Flow channel is 85  $\mu$ m high and 200  $\mu$ m long .

> Vertical rectangular obstacle with 5  $\mu$ m wide, 47.5  $\mu$ m.



Semicircular top sits 150  $\mu$ m away from the channel left boundary.

#### 5. RESULTS





Time=4 s Surface: von Mises stress (N/m<sup>2</sup>) Surface: Velocity magnitude (m/s) Arrow Surface: Velocity field (Spatial) Streamline: Velocity field (Spatial)

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore







Excerpt fron Plointograph for single obstaclernce in Bangalore



| No. of<br>Obstacles | Stress<br>(N/m2) | Velocity<br>(m/s) | <b>Displacement</b><br>(µm) |
|---------------------|------------------|-------------------|-----------------------------|
| Single<br>Obstacle  | 1.3327           | 4.1514x10^4       | 32.1236                     |
| Two<br>Obstacles    | 0.1704           | 1.5316x10^4       | 19.9367                     |



Finite element analysis plays an important role in helping to understand the interactions of the system under conditions that are simulated to replicate nature and provides a tool for visualizing phenomena not possible to be observed using conventional

observation equipment.