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Astrodynamics of Electric Propulsion

• Tsiolkovsky’s Rocket Equation can be used as a basis on moving in space:
∆𝑉𝑉 = 𝐼𝐼𝑠𝑠𝑠𝑠 ∗ 𝑔𝑔0 ∗ ln

𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
; 𝐼𝐼𝑠𝑠𝑠𝑠 =

Σ𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑚̇𝑚 ∗ 𝑔𝑔0

• ~6km/s to Mars LEO, or a 4:1 full/empty ratio with a 450s Isp
 Electrospray propulsion may achieve an 𝐼𝐼𝑠𝑠𝑠𝑠 of 2000-3000 seconds compared to 450 for chemical
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Electrospray Propulsion
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• Mechanically-simple system
 MEMS fabrication allows for mass production
 No pumps, which need ~10s watts

• Taylor cones formed by electric fields 
induced in the thruster -> molten salt 
emitted through grid

• Uses ionic liquids
 Ionic liquids aim to avoid impingement concerns of 

metal propellants
[3]



Extraction Region
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• Electrostatic field draws particles from “tank”
 In iEPS, through a porous layer that blocks passive unpowered flow
 Particles drawn towards unlike charge, are neutralized

• Taylor cone is formed between source and extractor grid
 At the tip of the cone, the electrical relaxation and fluid residence times converge and 

particles are expelled into a plume
 Ionic sources at >10μm distances found to minimize chance of interactions between cones

• Following extraction from grid, plume expands
 Higher current = higher angles, coaxial trends
 Downstream plume divergence dependent on extraction 

region + space charge

[3]



Extraction Region
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• Taylor cone boundary equipotentially 0V
 Within and outside of the cone, charge decreases 

away from red circle

• Whole system considered to be stationary
• Widely variable scale (1000Å -> 150000Å)

𝑉𝑉 𝑟𝑟,𝜃𝜃 = 𝑉𝑉𝑟𝑟 ∗
𝑎𝑎
𝑅𝑅

𝑛𝑛
∗

𝑟𝑟
𝑎𝑎

𝑛𝑛
−

𝑎𝑎
𝑟𝑟

𝑛𝑛+1
× 𝑃𝑃𝑛𝑛 ∗ cos 𝜃𝜃 − 𝑉𝑉0

• Conventional extraction region voltage model:

• Consequently defines electric field strength:

[5]

𝐸𝐸 = −𝛻𝛻𝑉𝑉



Methodology
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• Constructing Ga+ system in COMSOL Multiphysics to validate it as a tool through 
Voltage measurements

• Repeating process with unknown extraction region to characterize thruster system

[5]



Methodology
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• AC/DC stationary electrostatic field model

• Taylor Cone: 0V; Extraction grid: 5908V; free boundaries otherwise

• Simple model allowed for high grid density



Methodology
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• Geometry is used as stationary bounds in a steady state with e.g. a stationary 
spherical emission bead

• Voltage output to MATLAB and compared with SOC and Herrmannsfeldt

V=0

Fluid 
relaxation
length

V=5908 V=0



Methodology
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• iEPS thruster model based around approximations
 Scale study and interesting quantities were primarily sought
 As seen in the figure, voltage potential trends could be predicted as per the Ga+ model



Methodology
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Results

• Rough large-area electric potential is found to follow parabolic trend despite 
voltage and scale change (1000 v. 150000Å emission bead)

COMSOL (blue), Herrmannsfeldt (red), and
SOC (green) data juxtaposed. z/R denotes a
normalized scale from emission to extraction
grid.

Comparison of iEPS (line) and Ga+

extraction region (asterisk) normalized
potential w.r.t. extraction grid voltage
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Results

• Significant factors of particle movement drivers in the extraction region are 
shown by COMSOL Multiphysics:



Supporting Work
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• Experimental deposition study
 Field emission electron microscope conducting pre- and post-firing surface metrology study 

• Data from post-study metrology of samples is useful as divergence data for 
comparison with existing experimental findings by MIT/Accion Systems



Future Work
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• Time-dependent space charge build-up in extraction region plume
 Space charge is dominant in far-downstream plumes
 Determining Legendre functions for the EMI-BF4 beam for proper SOC analysis of iEPS

• Optimize MATLAB particle trajectory algorithms and data utilization
 Current trajectories inaccurate due to transition to MATLAB and ill-suited algorithms

• Juxtapose experimental study with previous divergence data, utilize them to support 
trajectory calculations
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