

Wallace H. Coulter School of Engineering

COMSOL Multiphysics® Software Used as a Laplacian Potential Simulator for an Electrospray Propulsion System Extraction Region

Sergio Gallucci, Parisa Mirbod Clarkson University Aeronautical Engineering '16 COMSOL Conference 2015 Boston, October 8th 2015

COMSOL CONFERENCE 2015 BOSTON

Summary

- Electric propulsion
 - Electrospray propulsion
- Mathematical Basis of Electrospray
 - Extraction Region
- Methodology
- Results
- Supporting/Future Work

Astrodynamics of Electric Propulsion

Tsiolkovsky's Rocket Equation can be used as a basis on moving in space:

$$\Delta V = I_{sp} * g_0 * \ln\left(\frac{m_{full}}{m_{empty}}\right); I_{sp} = \frac{\Sigma Impulse}{\dot{m} * g_0}$$

- ~6km/s to Mars LEO, or a 4:1 full/empty ratio with a 450s Isp.
 - Electrospray propulsion may achieve an I_{sp} of 2000-3000 seconds compared to 450 for chemical

Electrospray Propulsion

Electrostatic grid
Porous Ni
emitter array

2.3 mm

Propellant Electrical
feed port

- Mechanically-simple system
 - MEMS fabrication allows for mass production
 - No pumps, which need ~10s watts
- Taylor cones formed by electric fields induced in the thruster -> molten salt emitted through grid
- Uses ionic liquids
 - Ionic liquids aim to avoid impingement concerns of metal propellants

Extraction Region

- Electrostatic field draws particles from "tank"
 - In iEPS, through a porous layer that blocks passive unpowered flow
 - Particles drawn towards unlike charge, are neutralized
- Taylor cone is formed between source and extractor grid
 - At the tip of the cone, the electrical relaxation and fluid residence times converge and particles are expelled into a plume
 - Ionic sources at >10µm distances found to minimize chance of interactions between cones

Following extraction from grid, plume expands

- Higher current = higher angles, coaxial trends
- Downstream plume divergence dependent on extraction region + space charge

$$I = f(\varepsilon) \sqrt{\frac{\gamma KQ}{\varepsilon}}$$

Extraction Region

- Taylor cone boundary equipotentially 0V
 - Within and outside of the cone, charge decreases away from red circle
- Whole system considered to be stationary
- Widely variable scale (1000Å -> 150000Å)

Conventional extraction region voltage model:

$$V(r,\theta) = V_r * \left(\frac{a}{R}\right)^n * \left(\left(\frac{r}{a}\right)^n - \left(\frac{a}{r}\right)^{n+1}\right) \times P_n * \cos(\theta) - V_0$$

Consequently defines electric field strength:

$$E = -\nabla V$$

- Constructing Ga+ system in COMSOL Multiphysics to validate it as a tool through Voltage measurements
- Repeating process with unknown extraction region to characterize thruster system

- AC/DC stationary electrostatic field model
- Taylor Cone: 0V; Extraction grid: 5908V; free boundaries otherwise
- Simple model allowed for high grid density

- Geometry is used as stationary bounds in a steady state with e.g. a stationary spherical emission bead
- Voltage output to MATLAB and compared with SOC and Herrmannsfeldt

- iEPS thruster model based around approximations
 - Scale study and interesting quantities were primarily sought
 - As seen in the figure, voltage potential trends could be predicted as per the Ga+ model

- iEPS thruster model based around approximations
 - Scale study and interesting quantities were primarily sought
 - As seen in the figure, voltage potential trends could be predicted as per the Ga+ model

Results

 Rough large-area electric potential is found to follow parabolic trend despite voltage and scale change (1000 v. 150000Å emission bead)

Comparison of iEPS (line) and Ga⁺ extraction region (asterisk) normalized potential w.r.t. extraction grid voltage

COMSOL (blue), Herrmannsfeldt (red), and SOC (green) data juxtaposed. z/R denotes a normalized scale from emission to extraction grid.

12

Results

• Significant factors of particle movement drivers in the extraction region are shown by COMSOL Multiphysics:

Supporting Work

- Experimental deposition study
 - Field emission electron microscope conducting pre- and post-firing surface metrology study
- Data from post-study metrology of samples is useful as divergence data for comparison with existing experimental findings by MIT/Accion Systems

Future Work

- Time-dependent space charge build-up in extraction region plume
 - Space charge is dominant in far-downstream plumes
 - Determining Legendre functions for the EMI-BF₄ beam for proper SOC analysis of iEPS
- Optimize MATLAB particle trajectory algorithms and data utilization
 - Current trajectories inaccurate due to transition to MATLAB and ill-suited algorithms
- Juxtapose experimental study with previous divergence data, utilize them to support trajectory calculations

Acknowledgements

- Dr. Parisa Mirbod, Clarkson University
- Dr. Natalya Brikner, Accion Systems Inc.
- Clarkson University McNair Scholars Program

References

- [1] Martinez-Sanchez, M., & Pollard, J. E. (1998). Spacecraft electric propulsion an overview. *Journal of Propulsion and Power*, *14*(5), 688-699.
- [2] Stanbury, Sarah. Low Thrust Transfer to GEO: Comparison of Electric and Chemical Propulsion. Retrieved from Colorado Center for Astrodynamics Research.
- [3] Courtney, D. G. (2011). *Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion* (Doctoral dissertation, Massachusetts Institute of Technology).
- [4] Gamero-Castaño, M. (2008). The structure of electrospray beams in vacuum. *Journal of Fluid Mechanics*, 604, 339-368.
- [5] Ward, J. W., & Seliger, R. L. (1981). Trajectory calculations of the extraction region of a liquid-metal ion source. *Journal of Vacuum Science & Technology*, 19(4), 1082-1086.

Questions?

