Quantum Mechanics Applications Using the Time Dependent Schrödinger Equation in COMSOL Multiphysics® Software

A. J. Kalinowski¹

¹University of Connecticut, East Lyme, CT, USA

Abstract

INTRODUCTION:

COMSOL is used for obtaining the quantum mechanics wave function $\Psi(x,y,z,t)$ as a solution to the time dependent Schrödinger equation [1]. Probability determination of a particle being at a spacial point is treated by the "Schrödinger wave function formulation". This involves solving field pde's, thus is adaptable to COMSOL. The solutions provide quantum mechanics students , a supplementary understanding of how the $\Psi(x,y,z,t)$ behaves in simple examples.

USE OF COMSOL MULTIPHYSICS®:

Time independent Schrödinger's equation was solved using COMSOL [3-7]. Here, the "transient study type" is employed using the General Form PDE interface. An incident plane wave of the form $\Psi=\Psi o Exp(ikx-i\omega t)$, with $\Psi o=1.0$, is implemented by driving the model end face with $\Psi=\Psi o Exp(-i\omega t)$., The Ψo amplitude is gradually increased from ϵ to 1.0 over two time cycles in order to avoid the suddenly applied driver's real part @ t=0. Further, an absorbing boundary condition is developed.

RESULTS:

Bar Model

A 2-D bar is solved for testing FEM accuracy of the time-dependent Ψ propagation vs. a Laplace transform exact solution using [8]. Non-dimensional time (τ =t/T) and length (χ =x/ λ) quantities are scaled w.r.t. the incident wave period T= $2\pi/\omega$ and wave length λ = $2\pi/k$. Figure 1 shows agreement between the exact and FEM solution for Ψ vs x/ λ at τ =t/T=1.5 as the solution builds, heading towards the desired Ψ oExp(ikx-i ω t). The Figure 2 plot shows the solution at time τ =t/T=4.0, where the Ψ o unit amplitude is reached and illustrates the absorbing boundary is working.

Slit Model

Similar to above except here a two slit barrier is at the end of the bar, with width $\lambda/4$ slit opening. Figure 3 displays three snapshots in 3a) $\tau=t/T=3.0$, 3b) $\tau=4.0$ and 3c) $\tau=6.0$. The real part Ψ illustrates the diffraction progressing vs. time. Figure 3d) is at $\tau=6.0$, with $|\Psi|^2$ plotted, where a banded interference pattern evolves like ones observed experimentally [2]. In Figure 4 a plot of $|\Psi|^2$ vs. coordinate y/λ shows the bands, where the slice location is the dashed line in Figure 3c.

The value of Ψ |^2 is lower directly opposite the slit as say compared to values either directly above or below the slit, thus illustrating the wavelike diffraction of Ψ .

The probability of a particle being in a $\Delta A = \lambda/4 \times \lambda/4$ probability zone is addressed by evaluating $\iint \Psi |^2 dA$ over each zone in Figure 3d. Upon taking the ratio of an integrated zone (e.g. upper) divided by the integration over the mid zone (in-line with slit), it is 1.74 times more probable that a particle is found in the upper zone then in mid zone and 1.57 times more probable if it is found in the lower zone then in mid zone.

CONCLUSION:

The agreement between the exact vs FEM solution for a 2-D bar example with absorbing boundary conditions, was good. Solutions to the incident harmonic wave upon a two slit barrier, produced diffraction patterns showing bands of null zones due to wave destructive interference. This illustrates the wave like diffraction behavior of particles at the atomic scale.

Reference

- [1] Leonard. Susskind, et al., Quantum Mechanics, Basic Books New York, 2014.
- [2] Kenneth W. Ford, 101 Quantum Questions, Harvard University Press, Cambridge Ma, 2012.
- [3] COMSOL Multiphysics PhysicsBuilderManual Version 5.1, Pages 242-259.
- [4] COMSOL Multiphysics "Equations Based" Example, Version 5.1, "Conical Quantum Dot".
- [5] Mikhail V. Kisin, "Modeling of the Quantum Well and Cascade Semiconductor Lasers using 8-Band Schrödinger and Poisson Equation System", Proceedings of COMSOL Conference, Oct. 4-6, 2007, Newton, MA, USA. pp. 489-493.
- [6] Mikhail V. Kisin, et al., "Modeling of III-Nitride Quantum Wells with Arbitrary Crystallograph Orientation for Nitride-Based Photonics", COMSOL Technical Papers and Presentations Archives.
- [7] Y. Yao, et al., "Numerical Study of Exciton States of Core?shell CdTe/CdS Nanotetrapods by using COMSOL Multiphysics", COMSOL Technical Papers and Presentations Archives.
- [8] Peter P. Valkó, P et al., Comparison of Sequence Accelerators for the Gaver Method of Numerical Laplace Transform Inversion, Computers & Mathematics with Applications, (2002), implemented in Mathematica®.

Figures used in the abstract

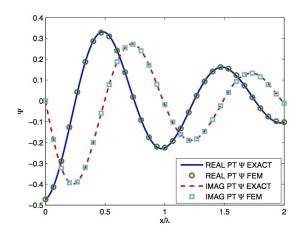


Figure 1: Wave Function Ψ vs x/ λ at τ =t/T =1.5 for Exact vs. COMSOL FEM 2D Plane Wave Bar Solution

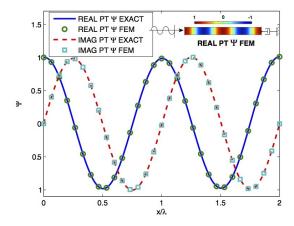


Figure 2: Wave Function Ψ vs x/ λ at τ =t/T =4.0 for Exact vs. COMSOL FEM 2D Plane Wave Bar Solution

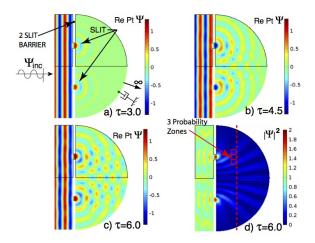


Figure 3: Real Part Ψ of Wave Function over the spatial field, at times : a) $\tau = t/T = 3.0$, b) $\tau = t/T = 4.5$, c) $\tau = t/T = 6.0$ and d) magnitude squared $|\Psi|^2$ at time : $\tau = t/T = 6.0$

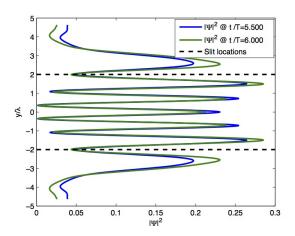


Figure 4: Wave Function Section Cut, $|\Psi|^2$ vs y/λ at $x/\lambda = 1.88$ at two times $\tau = t/T = 5.5$ and 6.0