

COMSOL CONFERENCE 2015 GRENOBLE

Modelling of Transport Phenomena in Laser Welding of Steels

Alexandre METAIS, Iryna TOMASHCHUK, Simone MATTEÏ, Sadok GAIED

Overlap of approx. 20 mm

15/10/15

Butt laser weld line without any overlap

2

Iryna TOMASHCHUK

ArcelorMittal

Technical

Performance

Cost reduction

I – Generalities II – Mathematical formulation III – Results and discussion

Problematic

Understand and control the mixing process in the weld between dissimilar steels

Multiphysical modelling of full penetrated laser welding

Use of tracer material to validate convection paths (Ni)

- **II** Mathematical formulation
- **III Results and discussion**

I – Generalities II – Mathematical formulation III – Results and discussion

IV – Conclusion and prospects

Assumptions

Reduction of computational resources

a steady keyhole with a conical geometry (full penetration)

• temperature inside the keyhole is assumed to be uniform $\left(T_{keyhole} = T_{vaporization}\right)$

Workstation

32 cores 128 GB RAM

- top and bottom surfaces of the weld are assumed to be flat
- liquid metal is assumed to be Newtonian and incompressible

- II Mathematical formulation
- III Results and discussion

Material properties

Thermal properties			
Fusion temperature	1808	К	
Vaporization temperature	3300	К	
Latent heat of fusion	2.7 x 10 ⁵	J∙kg⁻¹	

Uniform thermo-physical properties over all domain : 100 μ m insert of Ni is neglected (T_f = 1728 K).

6

I – Generalities II – Mathematical formulation **IV** – Conclusion and prospects

Heat transfer

III – Results and discussion

I – Generalities IV II – Mathematical formulation

III – Results and discussion

15/10/15

Reynolds-averaged Navier-Stokes Turbulent flow:

Mass continuity: $\Gamma \nabla \cdot (\mathbf{u}) = 0$

Wilcox modified k-ω model

$$\begin{aligned} \text{Momentum equation:} & \text{Closure} \\ \mathcal{T}(\mathbf{u} \cdot \nabla)\mathbf{u} &= \nabla \cdot \left[-\rho \mathbf{l} + (m + m_T) \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) \right] - \mathcal{T}\mathbf{g} + \mathcal{F}^{\text{Marangoni}} + \mathcal{F}^{\text{Plume}} + \mathcal{F}^{\text{Plume}} \\ \mathcal{T}(\mathbf{u} \cdot \nabla)\mathbf{u} &= \nabla \cdot \left[\left(m + m_T \mathcal{S}_k^* \right) \nabla k \right] + \rho_k - b_0^* \mathcal{T} \mathcal{W} k \\ \mathcal{T}(\mathbf{u} \cdot \nabla) \mathbf{k} &= \nabla \cdot \left[\left(m + m_T \mathcal{S}_k^* \right) \nabla k \right] + \rho_k - b_0^* \mathcal{T} \mathcal{W} k \\ \mathcal{Specific dissipation rate :} \\ \mathcal{T}(\mathbf{u} \cdot \nabla) \mathcal{W} &= \nabla \cdot \left[\left(m + m_T \mathcal{S}_w \right) \nabla \mathcal{W} \right] + \mathcal{A} \frac{\mathcal{W}}{k} \rho_k - \mathcal{T} b_0 \mathcal{W}^2 \\ m_T &= \mathcal{T} \frac{k}{\mathcal{W}} \qquad \rho_k = m_T \left[\nabla \mathbf{u} : \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) \right] \\ \end{aligned}$$

- II Mathematical formulation
- III Results and discussion

IV – Conclusion and prospects

Transport of diluted species

Fick's law:

$$\nabla \cdot (-D_i \nabla C_i + \mathbf{U} C_i) = 0$$

 $\frac{k_B T}{6\rho r_i m} + \frac{n_T}{Sc_T}$ Diffusion coefficient in liquid metal + turbulent diffusion

Iryna TOMASHCHUK

15/10/15

- I Generalities
- II Mathematical formulation
- **III** Results and discussion

Laminar flow \leftrightarrow Turbulent flow

⁴ Laminar diffusion isn't enough to obtain numerical
² and experimental results in good agreement
Underestimation of mixing!

Turbulent mixing is essential to have an important exchange of matter between 2 vortexes.

- I Generalities
- II Mathematical formulation
- III Results and discussion

IV – Conclusion and prospects

 $200 \ \mu m \ offset$

15/10/15

- I Generalities
- II Mathematical formulation
- III Results and discussion

Stream lines and velocity magnitude in cross section

15/10/15

- I Generalities
- II Mathematical formulation
- III Results and discussion

Weld geometry

Dimensions (µm)		Laser offset (µm)	
		0	200
L1	Exp	858	1069
	Calc	935	884
	ε (%)	9.0	17.3
L2	Exp	659	758
	Calc	791	797
	ε (%)	20.0	5.2
L3	Exp	1033	945
	Calc	897	865
	ε (%)	13.2	8.4

IV – Conclusion and prospects

 $P = 4 kW; Vs = 6 m.min^{-1}$

15/10/15

15/10/15

- II Mathematical formulation
- **III** Results and discussion

Stream lines and velocity field

15/10/15

IV – Conclusion and prospects

III – Results and discussion

II – Mathematical formulation

Iryna TOMASHCHUK

16

II – Mathematical formulation

III – Results and discussion

IV – Conclusion and prospects

Nickel mass fraction in cross-section

II – Mathematical formulation

III – Results and discussion

IV – Conclusion and prospects

Nickel mass fraction in cross-section

II – Mathematical formulation

III – Results and discussion

IV – Conclusion and prospects

Nickel mass fraction in cross-section

- I Generalities
- II Mathematical formulation
- III Results and discussion

IV – Conclusion and prospects

Conclusion

Model predics macroscopic chemical composition in the laser weld between dissimilar steels

20

- Turbulent Mixing
- Convective Mixing
- Macroscopic scale

15/10/15

- Good agreement of the weld geometry
- Modelled convection paths validated with Ni tracer
- Next step : Welding dissimilar steels

I – Generalities II – Mathematical formulation III – Results and discussion

Prospects

15/10/15

In front of the keyhole and in the mushy zone, the velocity field divergence **isn't calculated well**.

21

- I Generalities
- II Mathematical formulation
- **III** Results and discussion

THANK YOU FOR YOUR ATTENTION!

15/10/15