Simulation and Experimental Characterizations of a Thin Touch Mode Capacitive Pressure Sensor

A.-M. El Guamra

D. Bühlmann, F. Moreillon, L. Vansteenkiste, P. Büchler, A. Stahel, P. Passeraub

hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

COMSOL CONFERENCE 2015 GRENOBLE

To provide low cost and disposable sensors to control in vitro cell cultures for therapeutic and toxicity tests.

Outline

- Introduction
- FEM model
- Modeling assumptions
- Simulation
- Validation process
- Conclusion

Introduction

- Capacitive-type pressure sensor
- Normal mode

How to linearize the C-P characteristics?

Touch mode

Touch mode enables linearization of the C-P charcteristics

FEM model

Capacitor configuration

Equivalent model

Sensor geometry

Diaphragm is axisymmetric Electrodes are symmetric

Modeling assumptions

Real system simplification

Equivalent model without dielectric

Modeling strategy

2D-axysymmetric model,3D model coupled via the general extrusion operator

Simulation

Small error of non-linearity

Linear range: 9-40kPa

Validation process

Diaphragm deformation

Excellent matching with experimental data.

Excellent matching between physical system and simulation.

Conclusion

 A-3D multiphysics model has been developed for the pressure monitoring of a fluid in a channel.

 Geometry simplifications, symmetry and model coupling were successfully used to reduce the computational time.

• The model was validated through experimental data.

Thank you for your attention

Fabrication method

