

基于COMSOL的微波能工业 应用优化

朱铧丞

四川大学电子信息学院

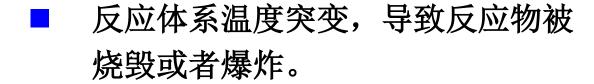
Email: zhuhuacheng@126.com

Outline

- 1. 微波能工业应用的机遇与挑战
- 2. 微波辅助生物柴油生产优化
- 3. 工业用管道加热装置优化及快速算法
- 4. 微波螺旋推进装置仿真优化
- 5. 微波-多孔介质-变形媒质的联合仿真
- 6. 结论

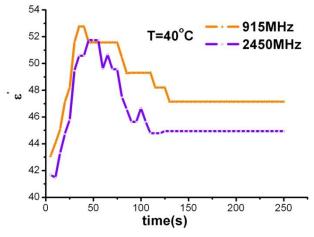
微波对化学反应的高致作用

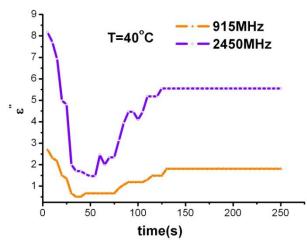
■有机反应中重要的一类反应:缩合反应过程使用微波后节能效果非常明显,见下表。

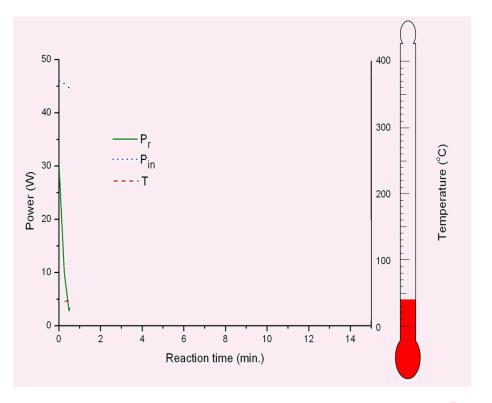

α甲醛与丙二酸二乙酯的缩合反应

加热方式	耗时 (min)	收率(%)	耗能 (KJ/mol)
传统加热	1440	44.7	4.9
微波加热	5	78	0.24

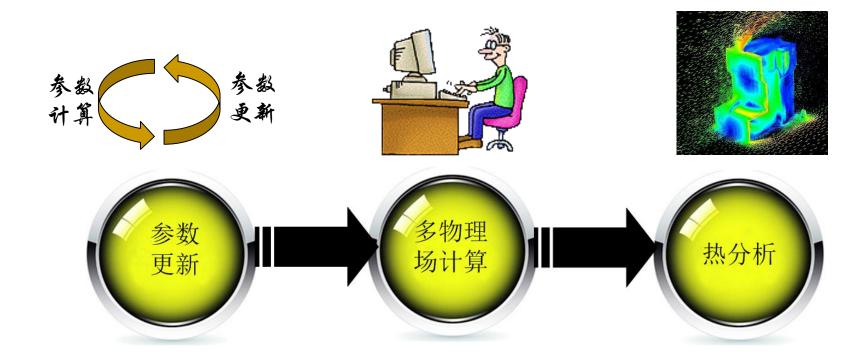
微波能工业应用的挑战



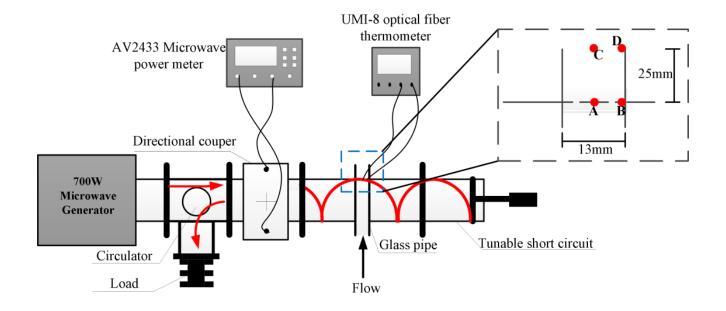

■ 反应体系对微波能量反射突变,损 坏微波源。



化学反应复介电系数的非线性特征

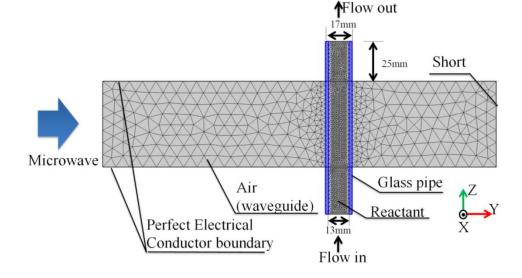


基于多物理场的优化与预测


Outline

- 1. 微波能工业应用的机遇与挑战
- 2. 微波辅助生物柴油生产优化
- 3. 工业用管道加热装置优化及快速算法
- 4. 微波螺旋推进装置仿真优化
- 5. 微波-多孔介质-变形媒质的联合仿真
- 6. 结论

生物柴油流动体系微波处理

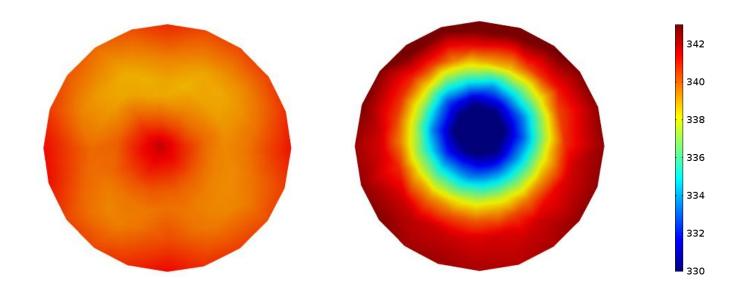


生物柴油流动体系微波处理

$$\rho_{m}C_{p}\left(\frac{\partial T(\vec{r},t)}{\partial t} + \vec{u} \cdot \nabla T(\vec{r},t)\right) = K_{t}\nabla^{2}T(\vec{r},t) + P_{d}(\vec{r},t)$$

$$\rho_m(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \cdot \vec{u}) = -\nabla P + \mu \nabla^2 \vec{u}$$

$$\nabla \cdot \vec{u} = 0$$



Initial velocity (cm/s)	Point	Computational Temperature (K)	Measurement Temperature (K)	Error (%)
4	А	340.86	338.35	0.7%
	В	340.40	340.20	0.1%
6	Α	330.96	329.80	0.4%
	В	339.17	338.35	0.2%
8	А	324.14	325.25	0.3%
	В	337.99	336.90	0.3%
10	А	320.06	320.80	0.2%
	В	338.17	337.15	0.3%

生物柴油烧动体系微波处理

•带有十字螺旋结构(a)与无十字螺旋结构(b)的上表面温度计算结果对比(单位:K)

Outline

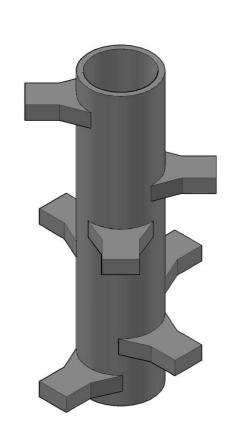
- 1. 微波能工业应用的机遇与挑战
- 2. 微波辅助生物柴油生产优化
- 3. 工业用管道加热装置优化及快速算法
- 4. 微波螺旋推进装置仿真优化
- 5. 微波-多孔介质-变形媒质的联合仿真
- 6. 结论

SCU

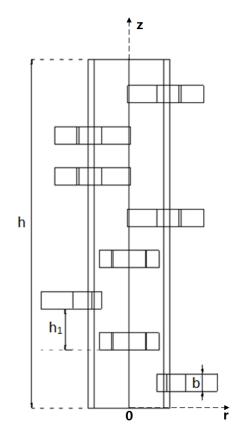
工业用管道加热装置优化及快速算法大尺寸管道加热设备快速计算

- 假设时间 $t = mt', m \ge 1$ 为时间缩比尺度变换因子
 - □ 热传导方程可以变换为:

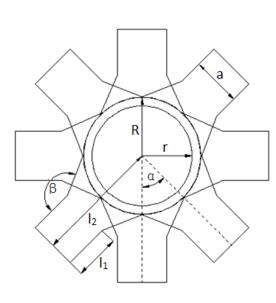
$$\rho_{m}C_{\rho}\frac{\partial T}{\partial t'} - \nabla \cdot (mk\nabla T) = mQ(mt')$$


□ 微波加热一般是周期性的热源,功率损耗密度平均值 Q(mt') = Q(t'),则:

$$\rho_{m}C_{\rho}\frac{\partial T}{\partial t'} - \nabla \cdot (mk\nabla T) = mQ(t')$$

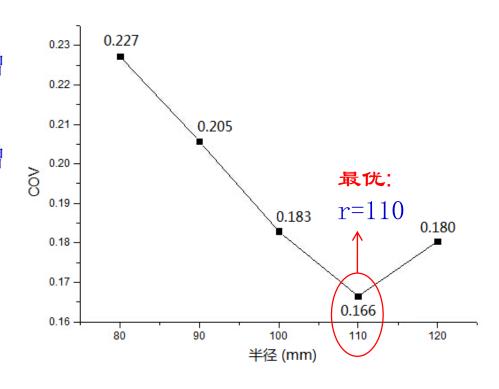

结论:变换等效热传导系数(mk),功率损耗密度(mQ),实现时间的压缩。

工业用管道加热装置优化及快速算法大尺寸管道加热设备快速计算


"管道式"固体材料微波加热装置结构

(a) 立体结构图

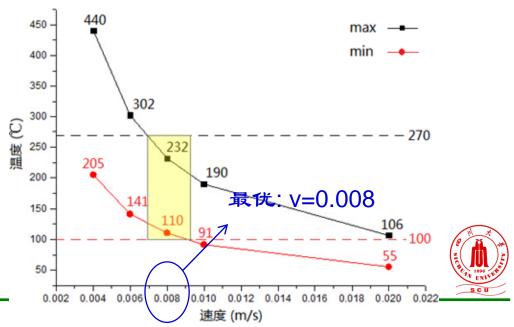
(b) 侧视图



(c) 俯视图

工业用管道加热装置优化及快速算法大尺寸管道加热设备快速计算

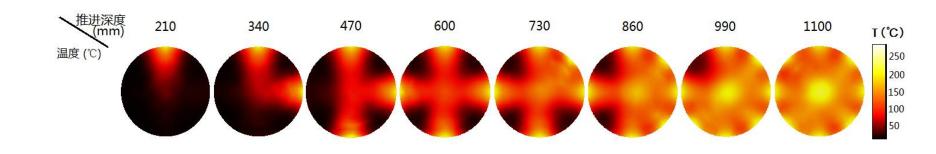
- 量化均匀性——褐煤温度场*COV*值曲线
- r < 110,管道半径的增加,COV值递减
- · r > 110,管道半径的增加,COV值变大
- · r = 110, COV 值最小,均匀性最好


工业用管道加热装置优化及快速算法大尺寸管道加热设备优化

- 褐煤干燥提质目标温度
 - □ T> 100°C → 褐煤脱除自由水
 - T> 150℃ → 褐煤脱除结合水
 - □ 褐煤燃点270℃

目标温度:

100°C < *T* < 270°C

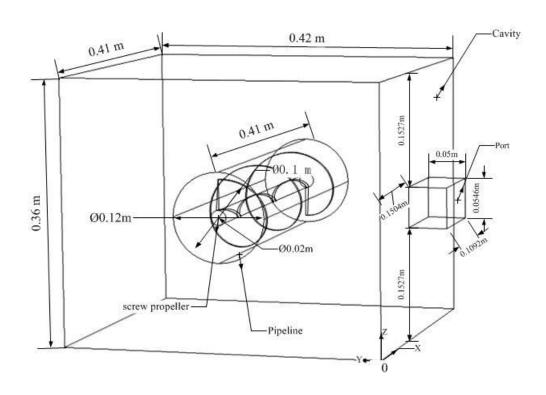

- 不同平移速度对应褐煤温度最值
- $v < 0.008, T_{max} > 270^{\circ}$ C
- v > 0.008, $T_{min} < 100$ °C
- v= 0.008110℃ < T < 232℃满足目标温度范围

SCU

工业用管道加热装置优化及快速算法大尺寸管道加热设备优化

- 最终结构: n=8, α =45°, r=110, v=0.008
- 管道横截面温度随褐煤进入管道深度的变化情况

褐煤以恒定的速度通过管道,在各个方向依次受到微波作用获得温升,最终完成加热,均匀性良好,微波吸收效率 96.75%,处理量2.5t/h。

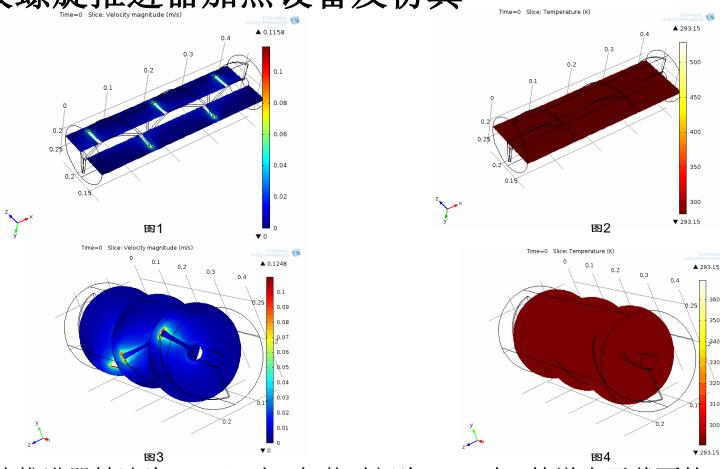


Outline

- 1. 微波能工业应用的机遇与挑战
- 2. 微波辅助生物柴油生产优化
- 3. 工业用管道加热装置优化及快速算法
- 4. 微波螺旋推进装置仿真优化
- 5. 微波-多孔介质-变形媒质的联合仿真
- 6. 结论

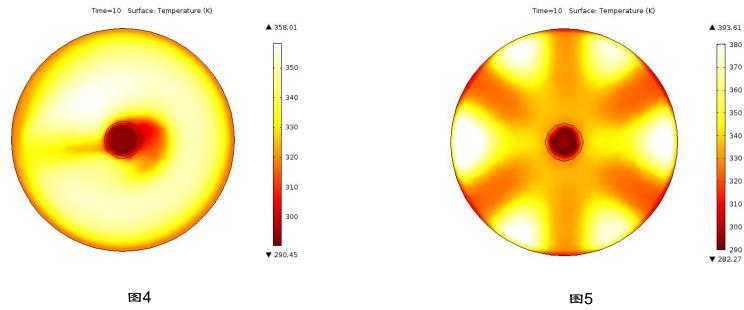
如图所示,一个螺旋推进器位于中心的管道。当管道工作,螺旋推进器会绕中心轴旋转。螺旋推进器的旋转会使材料同时旋转和前进。因此材料的位置在轴向和径向的变化。这将提高管道内的微波加热的均匀性。

微波螺旋推进器加热设备及仿真


将电磁场耗散功率作为热源导入流体热传导方程,并以全耦合的方式联合计算 Navier-Stokes 方程、质量守恒方程和旋转变换方程

$$\begin{split} &\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \\ &\nabla \cdot \left[-\rho \mathbf{I} + \mu \Big(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \Big) - \frac{2}{3} \mu (\nabla \cdot \mathbf{u}) \mathbf{I} \right] + \mathbf{F} \\ &\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \\ &d\mathbf{x} = d\mathbf{x} (\mathbf{r}_{\mathsf{bp}}, \omega, t) \\ &\frac{d\omega}{dt} = w \\ &\rho C_{\mathsf{p}} \frac{\partial T}{\partial t} + \rho C_{\mathsf{p}} \mathbf{u} \cdot \nabla T = \nabla \cdot (k \nabla T) + Q \end{split}$$

求得流体的速度、压力场分布和温度场的分布。


微波螺旋推进器加热设备及仿真

螺旋推进器转速为 0.2r/s 时,加热时间为 10s 时,管道水平截面的流速分布和温度分布、垂直截面流速分布和温度分别如图 1-4 所示

微波螺旋推进器加热设备及仿真

由上图可见,管道出口处温度的均匀性得到了明显的提高。

此外通过计算得转速为 1/5(r/s),螺旋叶片半径为 0.05m,加热 10s 时,整个管道的温度 COV 系数为 0.0952,而当没有螺旋推进器,管道内液体处于静止状态时,整个管道的温度 COV 系数为 0.1572,也就是说在管道内加入螺旋推进器后管道内温度的均匀性提高了 39.5%。由此可见,螺旋推进器的引入,对提高管道内加热的均匀性有极大的效果。

Outline

- 1. 微波能工业应用的机遇与挑战
- 2. 微波辅助生物柴油生产优化
- 3. 工业用管道加热装置优化及快速算法
- 4. 微波螺旋推进装置仿真优化
- 5. 微波-多孔介质-变形媒质的联合仿真
- 6. 结论

SCU

微波-多孔介质-机械变形联合仿真


Maxwell's equations:

$$\nabla \times \mathbf{E} = -j\omega\mu \mathbf{H}$$
 E= Electric field intensity

$$\nabla \times \mathbf{H} = j\omega \varepsilon \varepsilon_0 \mathbf{E}$$
 H= Magnetic field intensit

$$\nabla \cdot (\varepsilon \mathbf{E}) = 0$$

$$\nabla \cdot \mathbf{H} = 0$$

Microwave oven geometry

Relative permittivity:

dielectric loss

$$\varepsilon = \varepsilon'(\underline{M,T}) - j\varepsilon''(\overline{M,T})$$
dielectric constant

• Power absorbed (by the sample): $Q_{mic} = \frac{1}{2} \omega \varepsilon_0 \varepsilon'' |\mathbf{E}|^2$

Port

微波-多孔介质-机械变形联合仿真

多孔介质中的传输过程

Momentum Conservation

Darcy Law

$$\frac{\partial c_g}{\partial t} + \nabla \cdot \left(\mathbf{n_{g,G}}\right) = I$$

$$\mathbf{n_{g,s}} = -\rho_g \frac{k_g k_{r,g}}{\mu_o} \nabla P$$

$$\mathbf{n}_{g,s} = -\rho_g \frac{k_g k_{r,g}}{\mu_g} \nabla P$$

$$\mathbf{v}_i = -\frac{k_i k_{r,i}}{\mu_i} \nabla P$$

$$\mathbf{i} = \text{Water, gas}$$
Darcy Velocity

Mass Conservation

Liquid Water

$$\frac{\partial c_{w}}{\partial t} + \nabla \cdot \left(\rho_{w} \mathbf{v}_{w} \right) = \nabla \cdot \left(D_{w} \nabla c_{w} \right) - \dot{I}$$
bulk flow capillary flow

Water Vapor

phase change

$$\frac{\partial c_{v}}{\partial t} + \nabla \cdot \left(\rho_{g} \omega_{v} \mathbf{v}_{g}\right) = \nabla \cdot \left(\varphi S_{g} \frac{C^{2}}{\rho_{g}} M_{a} M_{v} D_{eff,g} \nabla x_{v}\right) + \dot{I}$$
bulk flow
binary diffusion

Energy Conservation

Thermal Balance for Mixture

phase change

$$\frac{\partial}{\partial t} \left[\sum_{i=s,w,v,a} \left(c_i c_{p,i} T \right) \right] + \nabla \cdot \left[\sum_{i=w,v,a} \left(c_{p,i} \mathbf{n_i} T \right) \right] = \nabla \left(k_{eff} \nabla T \right) - \lambda \dot{I} + Q_{mic}$$

$$\text{convection}$$

$$\text{convection}$$

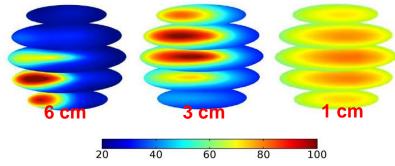
$$\text{conduction}$$

$$\text{microwave source}$$

Phase Change

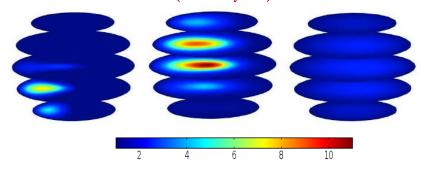
Evaporation-Condensation

$$\dot{I} = K \frac{M_{v}}{RT} \left(p_{v,eq} - p_{v} \right)$$



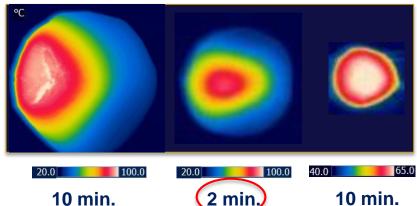
Non-Equilibrium Formulation

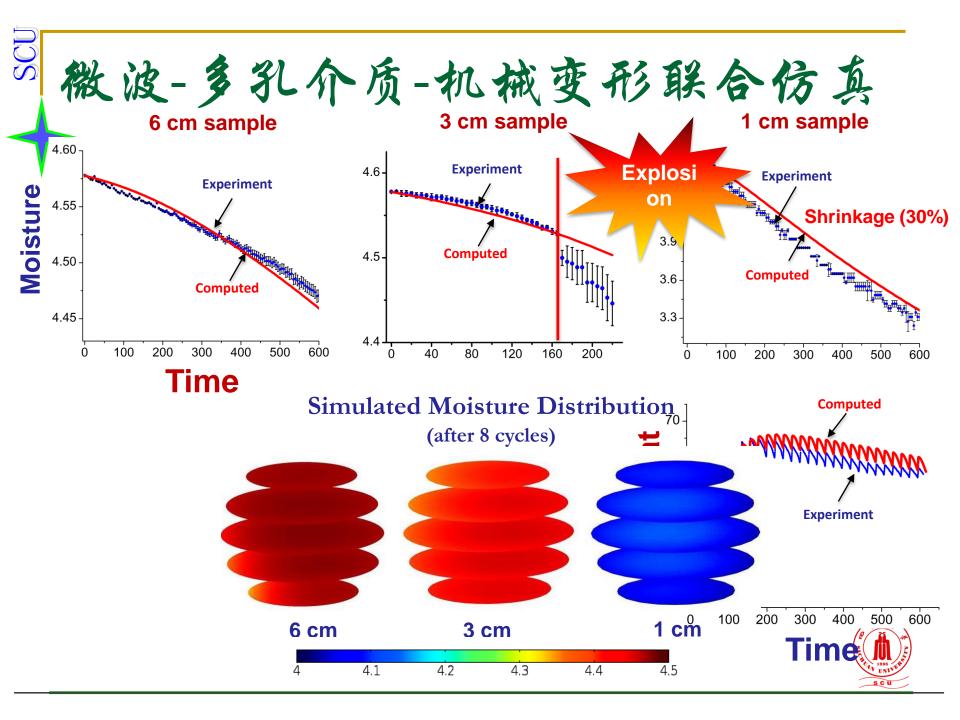
微波-多孔介质-机械变形联合仿真 SIMULATED


6 cm sample 3 cm sample 1 cm sample Simulated Temperature Distribution

(after 8 cycles)

Simulated Pressure Distribution

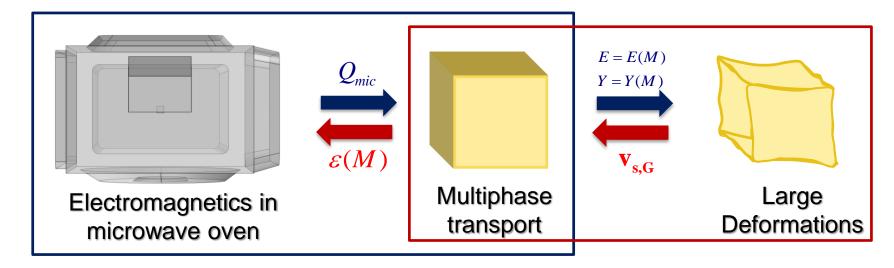

(after 8 cycles)


Stress inside (1.35 MPa) > Failure Stress (1.1 MPa)

ACTUAL

Regions of high temperatures shift away from the center with increasing size

3 cm



SCU

微波-多孔介质-机械变形联合仿真

3D coupled electromagnetics-transport – poromechanics model

Microwave drying of potatoes carried out at 10% Power Level for 10 min.

Prediction of Key Quality Attributes

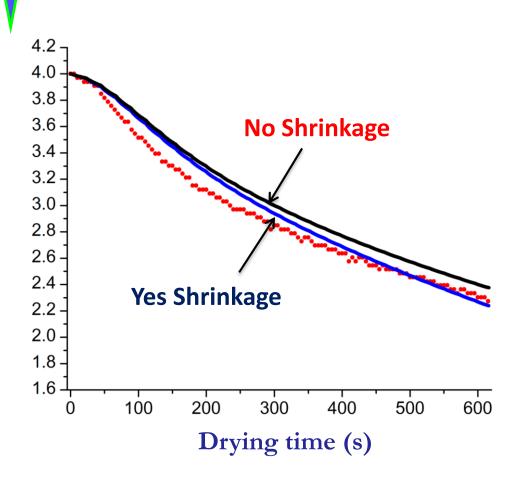
Porosity

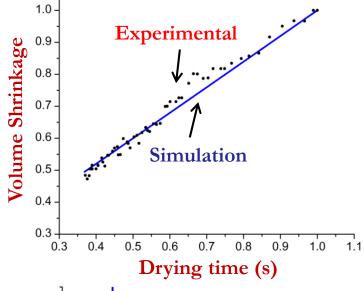
Bulk Density

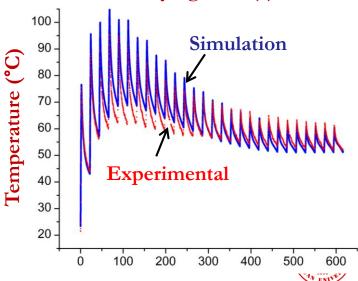
Volume changes

Crust Formation

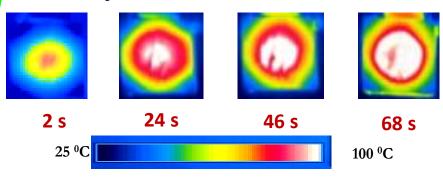
Stress cracking conditions

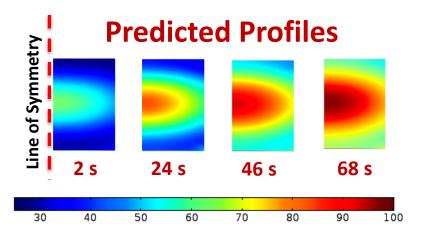

 Deformation is driven by both moisture loss and gas pressure generation

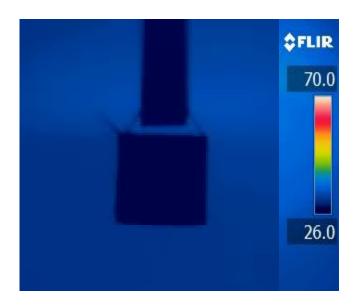


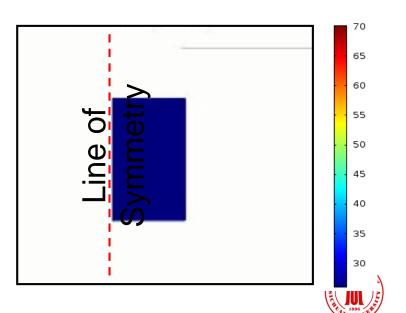

SCU

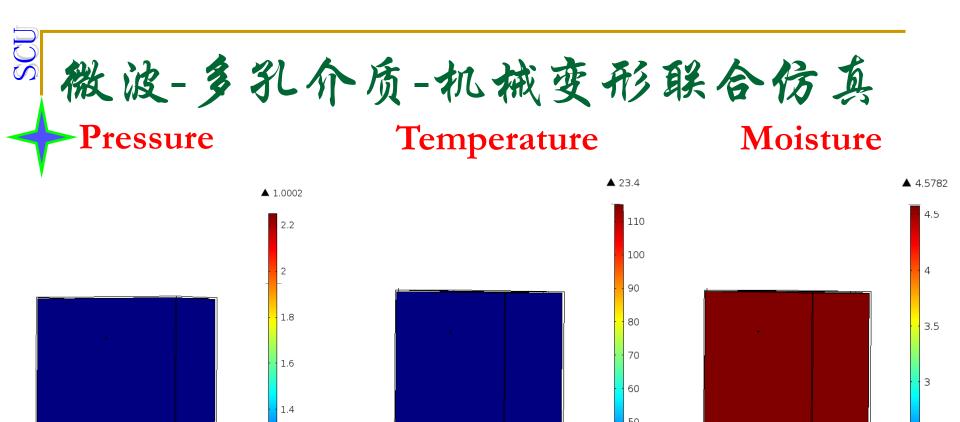
微波-多孔介质-机械变形联合仿真








微波-多孔介质-机械变形联合仿真


Experimental Profiles

Microwave drying at 10% power level

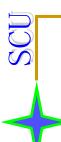
▼ 23.4

1.2

▼ 0.9998

Outline

- 1. 微波能工业应用的机遇与挑战
- 2. 微波辅助生物柴油生产优化
- 3. 工业用管道加热装置优化及快速算法
- 4. 微波螺旋推进装置仿真优化
- 5. 微波-多孔介质-变形媒质的联合仿真
- 6. 结论



总结

- 利用 COMSOL 多物理场仿真软件实现微波能应用中优化案例,利用 COMSOL 这一多物理场协同计算程序实现微波、热场、流体场、传质场、压力场、反应场等尽可能完善的物理场模型的耦合计算,无限逼近真实情况。
- 实验结果表明计算结果准确,并进一步将经验证的模型用于优化设计中,获得良好的效果。

Thank you for your attention

