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Latent Heat Storage with Tailored Power and Capacity

 Latent heat storage 
 Using phase change solid – liquid to store

thermal energy

 Open porous metal structure as heat conductive 
structure to increase storage power  
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3D Wire Structure

 Based on regular helices twisted together parallel 
and perpendicular in one plane and stacked into 3D 
structure

 Heat carrier pipes fit in multiple directions in the 
modelled pores (option (a) is preferred)
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Geometric Model and Simplifications
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 Full geometric modelling within COMSOL

 Complexity reduction by using symmetry, periodicity

 Constant temperature as thermal source

 Brazed Structure modelled by Boolean combination 
with solder body 
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Modelling the Phase Change and Melting Time Analysis

 Simulation of eutectic mixture of LiNO3 – KNO3

with 33 wt.-% LiNO3

 Complex melting behavior with two phase changes
 solid-solid change at 115 °C ± 1.5 K with 18 kJ/kg
 solid-liquid change at 133 °C ± 4.0 K with 160 kJ/kg

 Heat of fusion represented by peaks within the  
temperature dependent heat capacity

 Melting Time is defined when the whole PCM within 
the unit cell has changed to liquid phase
 monitoring the heat capacity at a cutline (red)

for every  calculated time step
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Results: Influence of brazing
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 Brazed structure shows a clearly more advanced melting front
 considerably higher storage power possible

Temperature distribution within the unit cell at a time of 100 minutes
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Results: Influence of Material Combinations

 Wire materials with high heat conductivity 
result in significantly shorter melting time

 Brazing the structure also reduces melting time

 Copper brazed C50 wire structure represents a 
highly cost effective option with good storage 
power
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Body

Arm

Identical 
Cross-section

 Different length scales within the full model lead to high mesh resolution and simulation times
 upscaling to whole heat storage system is difficult

 Solution: simplification of the wire crossroads to reduce scale differences

 Conditions:

 Identical volume, heat transfer surface 
and heat conductive area connecting 
two crossroads

 Identical thermal behavior by maintaining
thermal properties

Modelling the Simplified Geometry
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Simplified Model: Thermal Behavior Validation

 Thermal properties of arm and body 
modelled separately

 Use of mass weighted mixture resulted in
≈10 % variation in melting time

 Compensation by an empirical coefficient 

 Determined by comparative simulations

 Coefficient Range 0.90 … 1.05 

 Coefficient depends on wire/solder 
material combination

 Use of simplified geometry reduces 
simulation time by 25 %
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Simplified Model: Thermal Behavior Validation
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 Compensation coefficient for material combination C50/Ni: 0.91
 Both models show identical thermal behavior
 upscaling to whole storage with simplified model possible
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Simplified Geometry
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Detailed Geometry

Temperature distribution within the unit cell at a time of 70 minutes
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Conclusions

 Open porous metal structures, such as 3D wire structures, increase the power of latent heat storages.

 The presented simulation model allows the investigation of transient phase change behavior within 
a unit cell.

 Two main impact factors on storage power were identified: wire material and brazing the structure. 

 A brazed C50 structure is a very cost effective option compared to using copper as wire material.

 The developed simplified geometry allows the design of tailored latent heat storages for any given 
application.
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