

# Developing solutions to tonal noise from wind turbines using COMSOL Multiphysics

Dr Jutta Stauber



Comsol Conference 2016, 14.10.16

#### Introduction



- Tonal noise can be caused by frequency matching between tower and rotating components in drive train
- Tonal noise from wind turbines can lead to health issue
- → Strict regulatory penalties



#### Introduction



- Possible mitigation retrofitting solutions:
  - Limit rotor speed
  - Constrained layer damping
  - Tuned mass dampers
- Mitigation solution modelled here based on advanced particle damping



# Advance Particle Dampers



- Containers filled with EniDamp<sup>™</sup>, an advance particle damping material (so-called APD pods)
- APD pods magnetically attached to tower walls
- Broadband damper
- Mass of APD pods 5% of active mass of tower





Ott M, Weisbeck J, Gerges SNY, Bustamante, M. The effectiveness of particle damping for use on vertical surfaces; Proc INTER-NOISE 2014; 16-19 November; Melbourne, Australia 2014

# Experimental data for APD pods



- Aim: determine structural parameters of APD on tower
- APD pod on 1m x 1m x 12 mm steel plate
- Apply force by shaker
- Measure surface acceleration at 12 sensors



APD pod

Shaker

# Model of APD pod as part of tower



- Determine structural properties: <a> \( \bar{\text{}} \)
  - Density (combined mass of place and APD pod)
  - Young's Modulus not changed by presence of APD pod
  - Damping ratio as a function of frequency
- → determine reduction of surface | acceleration of tower



#### Structural-acoustic model



- Structural model to determine acceleration of blades and tower
- Acoustic models for the sound pressure level (SPL) from tower and blades
- Structural-acoustic model to deteremine the surface acceleration of nacelle and SPL in far field

#### Model



- Structural model of tower and blades:
  - Tower, blades, drive train, foundation
  - May include APD pods on tower wall
  - Shell, beam and solid elements
  - Excited using force related gear/ meshing



#### Model



- Structural-acoustic model of nacelle:
  - Nacelle walls with air domain with perfectly matched layer (PML)
  - Shell elements
  - Coupled to component 1 through Multiphysics coupling



#### Model



- Determine surface acceleration of tower wall
- Determine sound pressure level (SPL) at observer position (tip height) from
  - SPL from tower
  - SPL from nacelle
  - SPL from each of the blades

#### Results - Surface acceleration





## Results - SPL contribution





### Results - SPL





#### Conclusions



- Placement of APD pods increases damping properties of tower wall leading to reduction in tonal noise
- Increase tonal reductions by optimising APD pod placement



#### Thank you for listening!

Dr Jutta Stauber Project Engineer

Xi Engineering Consultants

Email: juttastauber@xiengineering.com

Tel: +44 (0)131 290 2252

#### Broadband - Surface Acceleration





# Broadband - SPL



