

Finite Element Modeling of MEMS Chevron Thermal Actuators for Strain Engineering of Graphene

Mounika Vutukuru, Jason Christopher, David Bishop, Bennett Goldberg, Anna Swan Optical Characterization and Nanophotonics Laboratory

Strain Engineering of 2D Materials: Motivation

Graphene mechanical resonators:

Bunch et al. Science 315, 490 (2007)

Strain - modified band gap Transistors, Photodetectors, LEDs Y.Y. Hui et al., ACS Nano, **7**, 7126 (2013)

Strain - modified thermal conductivity Thermal management CPU's

J. Chen et al., Nano Lett., 14, 819 (2014)

Graphene mechanical switch:

Milaninia et al. APL 95, 183105 (2009)

N. Levy et al., Science, 329, 544 (2010)

A.C. Gomez et al., Nano Lett., 13, 5361 (2013)

Current Straining Techniques

Y.Y. Hui et al., ACS Nano, 7, 7126 (2013)

Kitt, A. L. et al., Nano Letters, 13(6), 2605-2610 (2013)

3

MEMS Actuators for Staining 2D Materials

4

Simulation of Chevron Actuator on COMSOL 5

Design and Fabrication of Chevron Actuator 6

L-edit design of the chevron actuator.

Fabricated devices are released in HF acid and ballbonded for actuation

Testing of the Chevron Actuator

U	n-	A	ct	ua	te	d

Actuation

Parameter to be probed	Obtained by		
Displacement	Optical microscope measurements using on-site verniers		
Current	Device is probed between the ball-bonded pads		
Temperature	Raman Spectroscopy		
Vacuum Measurements for Convective and Radiative losses	Actuation of the device in an SEM		

Glowing beams at high voltage

Comparison between Model and Experiment⁸

Comparison between Model and Experiment

Comparison between Model and Experiment

Current Progress

Graphene slipping from MEMS device under actuation.

SEM image showing graphene slipped from anchor side.

Technical Road Map

- Build reliable and predictable model of the Chevon Actuator
- 1. Simulating 2D on MEMS Actuator
 - Thin Layer Membrane interface
 - Analyze displacement dependent strain in graphene
- ✓ Friction Engineering of MEMS Actuator
- 1. Advanced Strain Geometry
 - Shear and Biaxial Devices
- 2. Low Temperature
- 3. 4 Point Electrical Contact

Electronics Applications:

- Scalable
- Industry standard
 - integration

Acknowledgments

COMSOL CONFERENCE 2016 BOSTON

Principal Investigators: Anna Swan Bennett Goldberg

Collaborators: David Bishop <u>Graduate Students:</u> Jason Christopher Travis Kohler

Optical Characterization and Nanophotonics Laboratory, Boston University Funding: NSF DMR 1411008

THANK YOU!

Photonics Center

