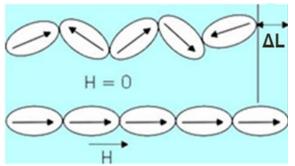
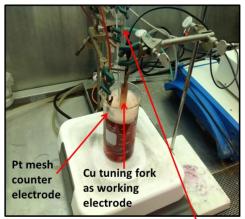

Exceptional service in the national interest


Modeled Electroformed MEMS Variable Capacitor for Cobalt Iron Alloy Magnetostriction Measurements

Eric D. Langlois, Patrick S. Finnegan, Jamin R. Pillars, Todd C. Monson, Mark H. Ballance, Christopher R. St John, Charles J. Pearce and Adam J. Thorpe

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Electrodeposited Magnetostrictive CoFe

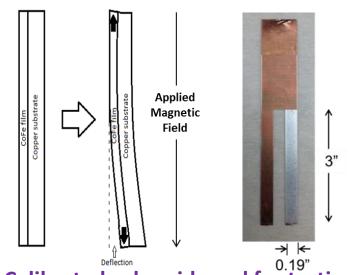

 $\lambda(H) = \Delta L/L$

Previous work:

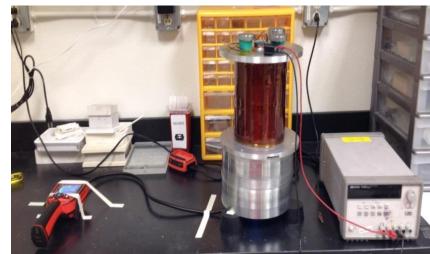
Hunter, D., et al., *Giant magnetostriction in annealed* $Co_{1-x}Fe_x$ *thin-films.* Nat Commun, 2011. 2: p. 518.

Our work:

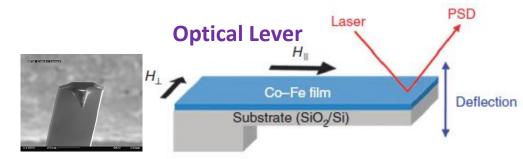
Jamin Pillars, Eric Langlois, Christian Arrington, Todd Monson, "Electrodeposition Processes for Magnetostrictive Resonators," U.S. Patent Application #14876652, October, 2015.



Bubbler with N₂ gas

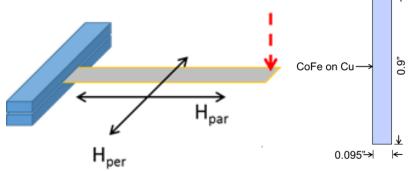

Need a method for measuring λ to obtain fundamental performance metrics λ_s and $d_{33,m}$ for magnetostrictive materials.

Expression du Tremolet de Lacheisserie and Peuzin


$$\lambda_{eff}(D_{sat}) = \frac{2(D_{\parallel} - D_{\perp})E_s t_s^2 (1 + \upsilon_f)}{9E_f L^2 t_f (1 + \upsilon_s)}$$

Calibrated solenoid used for testing

Motivation – Existing Measurement Techiques Insufficient


Hunter, D., et al., Giant magnetostriction in annealed Co1-xFex thin-films. Nat Commun, 2011. 2: p. 518.

- Strain resolution (pε)
- Compatible with electrodeposition
- Torsional effects

Incompatible with electrodeposition

Laser Doppler Vibrometer (LDV) $c_u \rightarrow = \frac{1}{7}$

Staruch, M., NRL, communications

Triaxial, 0°/90°/45°

Resistance: 120 Ω Gage factor: Approx. 2.1

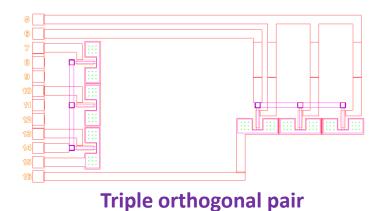
- 45°
- Strain resolution (± 5με)
- Not good for thin films
- Film adhesion poor

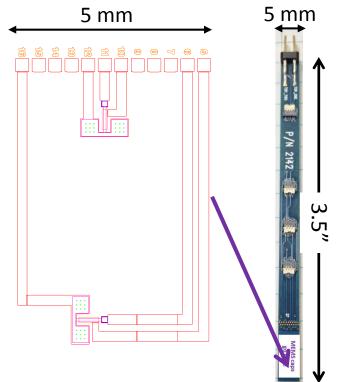
Simulation – Geometry and Materials

			Device Feature	Geometry
Contact Pads 2 μm Cu	Capacitor Top Plate (Movable) 9 μm Cu	CoFe/Au Bimorph Cantilever 2 μm CoFe/9 μm Cu	Electrostatic Actuator	Width: 300 µm Depth: 80 µm Height: 50 nm
T		Bimorph Cantilever: Top Film	Width: 400 μm Depth: 40 μm Height: 2μm	
		Bimorph Cantilever: Bottom Film	Width: 400 μm Depth: 40 μm Height: 9μm	
v~			Top Capacitor Plate	Area: 0.135 mm² Height: 9μm
	Electrostatic Actuator 75 nm Pt, evaporated	Capacitor Bottom Plate (Fixed) 2 μm Cu	Bottom Capacitor Plate	Area: ~0.16 mm² Height: 9μm
*Model	courtesy of Adam Thorpe, Sandia Nation	Air Volume	Sphere: R = 1.2	

Both magnetoelastic and electrostatic models were created. Only magnetolastic model will be presented.

mm


Design Features


Advantages

- Chip-scale (5mm (W) X 10mm (L))
- Orthogonal (patterned by photolithography)
- Parallel sensors possible (boosts signal)
- Less prone to torsional effects (improves accuracy)
- Reduced instrumentation complexity

Disadvantages

Complex fabrication (Sandia is good at this!)

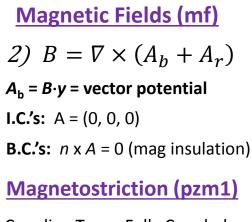
Single orthogonal pair Custom PCB

Agilent 4284A 20Hz-1MHz Precision LCR Meter

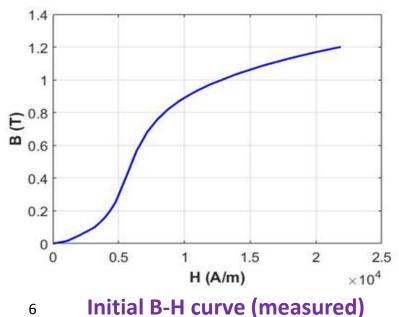
Simulation – Physics Interfaces and Mesh

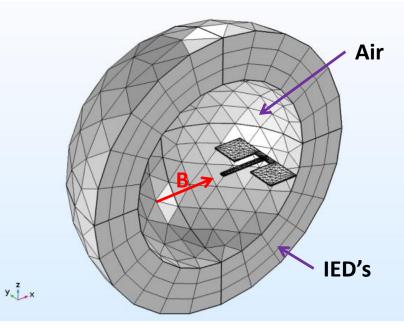
Solid Mechanics (solid)

1) $0 = \nabla \cdot S + F_V$


S = stress tensor F_v = body force per volume

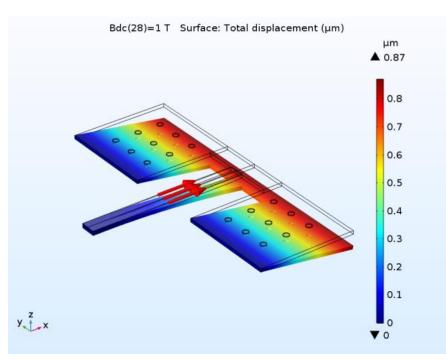
2)
$$\varepsilon_{me} = \frac{{}_{3}\lambda_{S}}{{}_{2}M_{S}^{2}}dev(M \otimes M)$$


 λ_s = saturation magnetostriction M_s = saturation magnetization

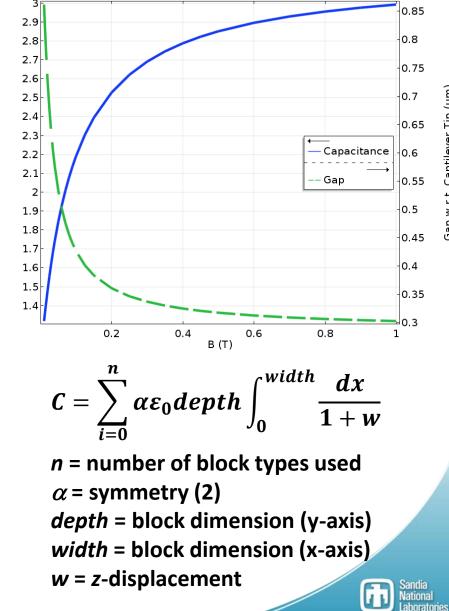

I.C.'s: u = (0, 0, 0) m $\delta u / \delta t = (0, 0, 0)$ m/s

B.C.'s: cantilever anchor

Coupling Type: Fully Coupled


User controlled mesh with free tetrahedrals of size "Normal".

Simulation – Study and Results


Stationary Study

- Parametric sweep: $\lambda_s = 50-100 \text{ ppm } @ \text{ B} = 1 \text{ T}$ ٠
- Intent: magnetically saturate film without • touching bottom plate
- Parametric sweep: B = 0 to 1 T

3D surface displacement plot (MEMS Cap 1)

Capacitance and gap spacing as a function of applied magnetic flux ramp

Capacitance (pF)

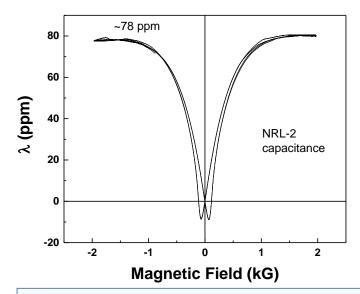
Sensitivity and Range

0.7 0.65 0.6 Cantilever Tip Displacement (µm) 0.55 0.5 0.45 MEMS Cap 1 0.4 0.35 0.3 0.25 0.2 0.15 1.5 2.5 3 2 Capacitance (pF)

MEMS	Cap 1	sensitivity	plot
------	-------	-------------	------

Device	Quasilinear Range (B = 0.01 to 0.1 T)		λ _s (ppm)
MEMS Cap 1	0.14 to 0.57 μm 1.3 to 2.2 pF	0.48	100

Conclusions

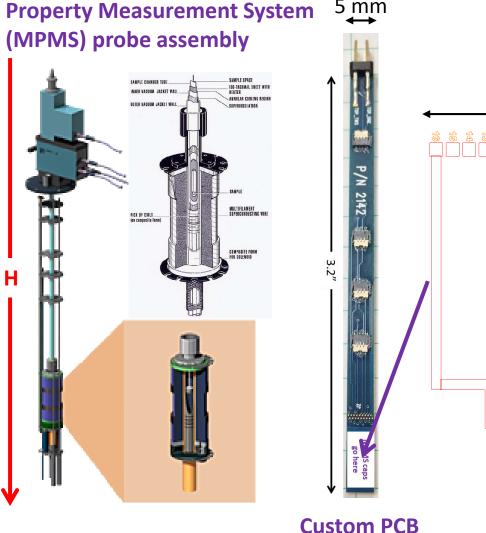

- New method for measuring magnetostriction in electroplated CoFe alloy films needed → MEMS variable capacitors.
- Sensitivity of 0.48 $\mu m/pF$ was achieved with the MEMS Cap 1 design.
- Capacitor was designed to measure films with saturation magnetostriction values ranging from λ_s = 1 to 100 ppm.
- Alternative designs under consideration.
- 1st pass capacitors under development.

Thank You!

Acknowledgements:

- Individuals for their support and contributions to the vision of this work: Dianna Blair, (Project Manager), Keith Ortiz, Wahid Hermina.
- Metglas Inc. for providing free samples of magnetostrictive alloy ribbon used for calibration of our magnetic test equipment.
- This project was supported by Laboratory Directed Research and Development (LDRD) Project numbers 150356 and 200169. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Independent verification of magnetostriction in Sandia bimorph CoFe/Copper cantilevers confirmed by Margo Staruch, Ph.D., Naval Research Labs (NRL).



Measurement Apparatus: (MPMS-7) superconducting quantum interference device (SQUID) magnetometer.

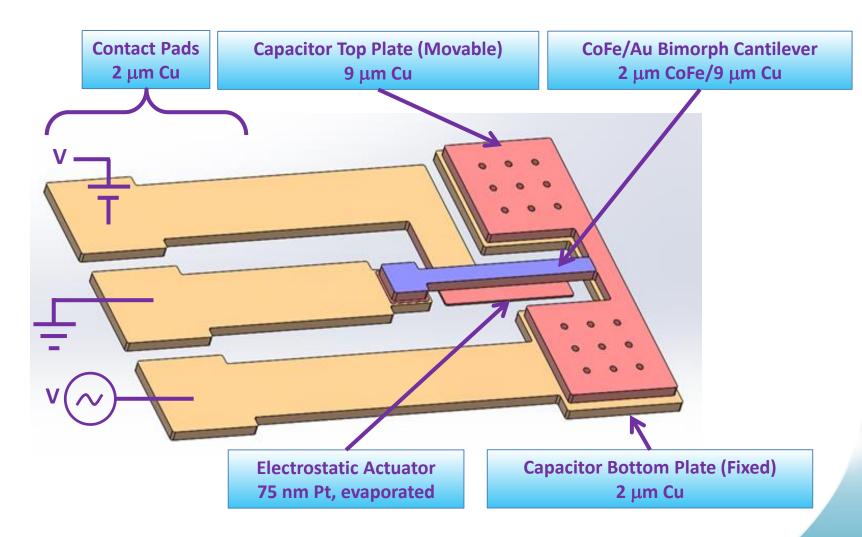
Quantum Design Magnetic

5 mm

5 mm

Π

69 69 🖂


ରେ ଜିନ

Plating Bath

CoFe	Chemicals	H ₃ BO ₃	Co(H ₂ SO ₃) ₂	ТМАВ	Sorbitol	Na Saccharin salt	Ascorbic acid	$Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O$
	Conc. (mol/L)	0.5	0.4	0.1	0.01	0.05	0.05	0.08
Au	Chemicals	Neutronex 309i Gold – 2.4 troy oz gold/gal, 40 ppm thallium						
	Conditions	700 Hz pulse			25% duty cycle		2 mA/cm2	

- *CoFe: Bath ph=2.0; Bath temperature=50°C
- Au: : Bath ph=9.5; Bath temperature=50°C

*Model courtesy of Adam Thorpe, Sandia National Laboratories

