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Abstract: A numerical finite element model of 
one human brain is built in Comsol in order to 
study a particular form of hydrocephalus, the so-
called normal pressure hydrocephalus (NPH). 
The geometry of the ventricles and the skull is 
obtained by magnetic resonance imaging (MRI) 
and imported in COMSOL Multiphysics. Form 
the mechanical point of view, the brain 
parenchyma is modeled as a porous medium 
fully saturated with the cerebrospinal fluid (CSF) 
using the Biot’s theory of consolidation. 
Diffusion tensor imaging (DTI) is used to 
establish locally the direction of the bundles of 
neurons (fiber tracts). Novel ideas are introduced 
to link the diffusion with CSF permeability in 
brain. To find out the influence of the anisotropy 
in permeability, two models are tested under the 
same CSF pressure gradient. To remain coherent, 
the average properties over the brain parenchyma 
are the same in the two models.  
 
Keywords: biomechanics, brain parenchyma, 
elasticity, permeability, anisotropy 
  
1. Introduction 
 

Normal pressure hydrocephalus (NPH) is a 
form of hydrocephalus and is one of the few 
treatable causes of dementia. In NPH, the 
ventricles enlarge although the CSF pressure 
remains close to normal within the ventricles [1-
3]. The origin and the evolution of NPH are yet 
unclear compared to non-communicating or 
obstructive hydrocephalus which is caused by a 
CSF flow obstruction. NPH is generally 
categorized as a particular form of 
communicating hydrocephalus with the absence 
of any CSF-flow obstruction. The pathological 
manifestations of NPH are gradual memory loss 
(dementia), balance disorder (ataxia), urine 
incontinence and a general slowing of activity [2, 

3]. The existence of NPH was first pointed out 
by Hakim and Adams in 1965 [3], who asserted 
that the pressure within ventricles is not solely 
responsible for the dilation of ventricles. In their 
work, the product of ventricular pressure and 
ventricular area were considered as an effective 
parameter to the possible explanation of NPH. 
Later on, more advanced analytical and 
numerical models were developed to try to 
understand the development of NPH. Elastic and 
poro-elastic models based on the Biot’s theory of 
consolidation [4] have been used. All models 
assumed fully isotropic and homogenous 
elasticity and permeability properties within the 
brain parenchyma [2, 5-6]. Non-linearity has 
been introduced through either a dilation 
dependent Young’s modulus or a dilation 
dependent permeability of the brain parenchyma 
[7, 8]. With the help of the finite element (FE) 
technique, different kinds of constitutive 
equations [1, 5, 7, 8 and 9] were introduced. 
Pena et al. [1,9] enlightened the influence of the 
ventricular geometry on increasing the intera-
ventricular pressure using a FE model. By 
introducing nonlinearity such as large 
deformation theory and hyperelastic constitutive 
behavior in a 3D model of brain, Roy et al. [8] 
considered different cases such as 
compressibility of the solid part, single phase or 
biphasic models to understand NPH. By using a 
2D isotropic model, Momjian et al. [5, 7] and 
Pena et al. [9] showed that the greatest stress 
concentrations and the largest deformations 
occur at the anterolateral angle of the frontal 
horn.  

The brain parenchyma represents per se a 
heterogeneous medium and the presence of 
bundles of axons, i.e. fiber tracts, in the white 
matter gives birth to anisotropy in the 
permeability properties. On the other hand, the 
gray matter (neuron bodies) exhibits more 
isotropic properties. The influence of anisotropy 
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in permeability has never been studied 
numerically mainly owing to the absence of data. 
Abolfati [10] determined the anisotropic 
properties of brain white matter using a 
micromechanical model. Linninger et al. [11] 
simulated 3D CSF flow inside human brain 
numerically using CSF velocity data captured by 
Cine phase-contrast method. For the first time, 
three important elements in intracranial 
dynamics (brain, CSF, and blood) were 
considered. Nevertheless, the brain distortion and 
stresses have not been simulated in their models. 

A transverse isotropic (TI) model, as 
described in Fig. 1, has been recently introduced 
by Larrat et al. [12] for the elastic property. 
Indeed, the elastic stiffness is higher along the 
fiber tracts than perpendicular to them. The 
direction of the fiber tracts is aligned with the (3) 
axis as shown in Fig. 1 and is given by diffusion 
tensor imaging, a non invasive technique. The 
plane perpendicular to this direction (plane (1,2) 
in Fig.1) is isotropic in elasticity.  

   

 
 

 
Figure 1: schematic representation of the fiber tracts 
direction (3) and the plane of isotropy (1,2) for the 
permeability [12]. 

 
The difficulty in studying medically NPH 

arises from the inaccessibility of brain tissue 
using invasive techniques. On the other hand, 
non-invasive techniques can provide us with 
precious data on the brain properties. 

In the present investigation, the CSF 
permeability is assumed to exhibit the same 
transverse anisotropy as elasticity (cf. Fig.1). In 
other words, the permeability coefficients are 
different along the direction of the fiber tracts 
than perpendicular to them. In order to determine 
the direction of the fiber tracts in the white 
matter, DTI is used. Then for each voxel, the 
permeability tensor is expressed in the local 
frame (1,2,3). The goal of the present study is to 

assess the importance of a non-homogeneous and 
non-isotropic permeability in the CSF flow 
pattern within the brain parenchyma. To do so, 
voxel based results coming from non-invasive 
techniques such as MRI and DTI are used. 

 
1.1 Magnetic resonance imaging (MRI) 
 

MRI is used to determine the geometry of the 
brain parenchyma, i.e. of the space between the 
skull and the ventricles. Indeed, MRI is a well 
established medical imaging technique used in 
radiology to visualize the structure and function 
of the body because it yields excellent soft tissue 
contrast. It is possible to build sections or even 
3D geometry of brain parenchyma using Comsol 
in connection with Matlab program from MRI 
images. 
 
1.2 Diffusion tensor imaging (DTI) 
 

The existence of fiber tracts accounts for the 
anisotropic CSF diffusion within parenchyma. It 
is possible to obtain the CSF self-diffusion 
tensor in the brain using DTI [13]. When this 
tensor is expressed in the fiber direction (local 
frame (1,2,3) ), three eigen values D1, D2 D3 and 
their corresponding eigenvectors are obtained. 
The mean diffusivity (MD) [m2/s] and the 
diffusive fractional anisotropy (

ADF ) [-] are 

defined respectively as: 
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Mean diffusivity (MD) is used to distinguish 
between cerebrospinal fluid (where MD is high) 
and brain tissue (lower MD). On the other hand, 
high fractional anisotropy (

ADF ) indicates white 

matter because the directionality of the axon 
bundles permits faster diffusion along the 
neurons than across them [13]. 

DTI experiment was carried out on one 
human brain at the University Hospitals of 
Geneva. The MRI and DTI data of a given brain 
are considered as the base for the numerical 
calculation. The data are voxel based (size of 
voxel is 1.88×1.88×2mm3). The eigen vector of 
the diffusion tensor and the their two associated 
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invariants are used for each voxel as input for the 
numerical model in Comsol. 
 
2. The Finite Element Model 
 
The MRI data consists of 128×128×70 voxels in 
x, y and z direction respectively. The size of each 
voxel is 1.88×1.88×2mm3. An axial slice of the 
geometry of the brain has been extracted using 
Matlab program connected to Comsol. Fig. 2 
shows the top view of the domain and the 
associated mesh. In this slice, the two ventricles 
are visible and separated. The mesh is made out of 
63'104 prism elements with 64'398 nodes.  
 

 
 

Figure 2. 2D slice mesh of the brain parenchyma. The 
ventricles are not meshed. 
 

A 2D work-plane is defined in the Comsol 
work-plane settings. Free mesh parameters are 
used to construct the required elements for this 2D 
work-plane. The size of each element is chosen so 
that it is lower than the voxel size. It is chosen in a 
way to include all the experimental voxel based 
data. The mesh is refined in the region close to 
ventricle walls. Finally, the mesh is extruded to 
the 3D computational domain. The thickness of 
the slice is chosen as 2 mm that is the height of the 
voxels. The voxel based data are interpolated 
between each finite element. 
 
2.1 Constitutive equations 
 
Brain parenchyma is modeled as a porous 
medium fully saturated with the CSF. The 
evolution of NPH being very slow (months or 
years), a steady state situation is assumed. The 
Biot’s equations [4] for an incompressible fluid 
and completely saturated medium are 
summarized in the following equations assuming 

that there is no CSF sink or source term inside 
the parenchyma: 
 

( ) 0div p σ


                                                [3] 

( ) 0p  k


                                                    [4] 

where σ  is the effective stress tensor and p is 
the CSF pressure. The variable k  denotes the 
permeability tensor (m2) within parenchyma. The 
four unknowns of the problem are  , ,  x y zu u u , the 

three components of displacement of the solid 
constituent, and  p  the pressure of extracellular 

CSF, therefore there are four degrees of freedom 
per node. 

Solid, stress-strain (smsld) and Poisson’s 
equation (poeq) are coupled for modeling the 
multiphysics of the brain in the Comsol platform. 
In addition to the global coordinate systems, the 
fiber directions are constructed based on DTI 
eigen vectors. The new coordinate systems are 
aligned to the fiber direction to account for the 
local anisotropy. It is included in the model by 
providing Comsol the local (1,2,3) directions in 
each voxel.  

The two coupled differential equations are 
solved by Comsol. Direct solvers are more 
accurate but high memory consuming. On the 
other hand, iterative solvers allow accessing and 
changing the memory efficiency and accuracy by 
trying different preconditioners. Among different 
types of iterative solvers in Comsol, GMRES 
with geometric multigrid preconditioner is used. 
Quadratic functions are used for both 
displacement and pressure in each element. In 
the calculation of deformation, small 
deformation theory is used.  
 
2.2 Initial and boundary conditions 
 
Initial conditions are taken as zero for 
displacements and stresses at all points. Initial 
pressure is zero. The calculation consists in 
finding the solution where the pressure within 
the ventricles is increased to 5 mmHg (i.e. 
666.61 Pa) whereas it is kept to zero on the outer 
boundary (Dirichlet condition). The ventricles 
are permeable and they can deform freely. 
Therefore, the boundary condition on the 
ventricles is  n -  n p σ

 
with   5 mm Hgp   

where n


 represents the normal vector on the 
ventricle surface. The CSF within the 
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parenchyma is given the material properties of 
water. 

The brain surface is assumed to be 
mechanically fixed. The top and bottom surface 
of the slice are impermeable and fixed for 
displacement along the z-direction, which leads 
to a quasi 2D situation. 
 
2.3 Diffusion and permeability  
 

The link between diffusion and permeability in 
brain has not been studied intensively but it seems 
reasonable to assume that they vary in a similar 
manner both in amplitude and in direction. In the 
present study, we assume that the eigen vectors of 
the diffusion tensor coming from DTI and the CSF 
permeability inside the parenchyma are the same. 
Then, the Westhuizen and Du Plessis formula [14] 
are used for the parallel and perpendicular 
permeability coefficients of white matter (eqs. 5-
6). This formula has been used already by S. 
Gupta et al. [15] to simulate the three dimensional 
CSF flow in subarachnoid space (SAS). For the 
gray matter, isotropic Carman-Kozeny equation 
[16] is used (eq. 7) to model the laminar CSF 
flow: 

 

2
2 20 0

2

0

( 2.157(1 ))
, [ ]

48 1
para w

f f
k d m

f

  



               [5] 

 

2
0 0 2 2

3
2

0

(1 1 )
, [ ]

24 1
perp w

f f
k d m

f

  



                      [6] 

 

3
2 20

2

0

, [ ]
180 1

gray g

f
k d m

f



                              [7] 

where,
0 and,    g wf d d are the initial CSF 

content [0, 1], the distance between gray cell 
bodies and the diameter of axon fibers, 
respectively.  

Using equations 5 to 7, the permeability 
coefficients are in a good agreement with the 
values from literature [5, 6] taking an average 
CSF content of 18%. In white matter the diameter 
of fiber tracts falls within the range 1-10 μm [17]. 
An average of 5 μm is used as an input value for 
the fiber tract diameter in eqs. 5-6. For the gray 
matter, the space between the gray cells is also of 
the order of 5 μm. 

 
The CSF content (

0f ) is given by a 

polynomial regression function of the mean 
diffusivity (MD). This way, a relationship is 

established between permeability and diffusion 
in the brain parenchyma. 
 
3. Isotropic and transverse isotropic (TI) cases 
 

In this section, two different models are 
introduced to find out the influence of anisotropic 
permeability in CSF flow. A drained Poisson’s 
ratio of 0.3 is assumed for the solid phase in each 
case. 
 
3.1 Case 1: isotropic 
 

In this first case, the mechanical properties of 
the brain are assumed to be isotropic and 
homogenous. Therefore, the stiffness matrix 
requires two coefficients, the shear modulus G 
and the Poisson’s ratio v  and the permeability 
tensor reduces to one scalar coefficient k. The 
shear modulus is taken from literature and is 
equal to 3 kPa. The permeability coefficients are 
taken as the average of all voxel values (eqs. 5-7) 
over the slice. This way, average permeability 
and elastic properties of both models are 
identical. 

 
3.2 Case 2: anisotropic in permeability  
 
In this case, the anisotropy in the permeability 
tensor is introduced. The elastic properties remain 
homogenous and isotropic as in case 1. The 
permeability tensor in the local frame (1,2,3) is 
obtained using permeability coefficients given by 
eqs. 5-7. Transverse anisotropy in permeability is 
introduced in the white matter by the 
perpendicular and parallel permeability 
coefficients. The CSF permeability tensors in 
white and gray matter are written in the local 
coordinate system (1, 2, 3) (cf. Fig. 1) as follows: 
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4. Results and Discussion 
 

The computed results are presented in this 
section. The general pattern of displacement in 
the two cases is very similar. This is not 
surprising as the mean values of the permeability 
and elasticity coefficients over the slice are the 
same for both cases. However, slight differences 
appear when plotting the dilation (displacement 
magnitude) versus the arc-length (see Fig. 3) 
along the left ventricle (distance from a base 
point on top of the horn of associated ventricle, 
counter clockwise). Introducing anisotropy in 
permeability increases the dilation. A similar 
trend is observed in the right ventricle. 
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Figure 3. Comparison of the displacement magnitude 
(mm) in the two cases versus the arc-length (mm) in 
the left ventricle.  
 

The pressure field is presented in Fig. 4 for 
case 1 and in Fig. 5 for case 2 together with the 
streamlines. The effect of introducing anisotropy 
is clearly visible in Fig. 5. The CSF flow pattern 
is distorted by anisotropy in case 2. The CSF 
flows around the fiber directions. The pressure 
field is also affected by the anisotropic 
permeability of the parenchyma. It drops when 
the CSF content increases, as can be seen in the 
pathways between the two hemispheres.  

 

   
Figure 4. Pressure (Pa) and streamlines of fluid in 
case 1. 

 

   
Figure 5. Pressure (Pa) and streamlines of fluid in 
case 2.  
 

CSF velocity is plotted in a logarithmic scale 
in Figs. 6-7 for both cases. By introducing 
anisotropy in case 2, the maximum CSF velocity 
occurs close to the subarachnoid spaces (SAS) 
where CSF content is close to 1.0 (high MD). 
Introducing anisotropy increases the CSF 
velocity by a factor of ~1000 whereas the ratio 
between the permeability coefficients along and 
perpendicular to the fiber tracts 

direction  /para perpk k  is only of the order of 

100. These permeability coefficients yield a wide 
range for the CSF velocity going from cm to 
micron per second. This range has been 
experimentally observed by Linninger et al. [11]. 
The CSF pathway close to the SAS and between 
the two hemispheres shows a large flow of CSF. 
The increase of CSF velocity is reasonably 
associated to the high value of CSF content or 
MD. 
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Figure 6. Logarithm of fluid velocity magnitude (m/s) 
in case 1. 

 
 

    
Figure 7. Logarithm of fluid velocity magnitude (m/s) 
in case 2. 
 

A pressure gradient is imposed in between 
the ventricles and the SAS as previously done by 
Momjian and Pena [7, 9]. The existence of such 
a pressure gradient has never been demonstrated 
in the case of NPH. Albeit, Levine in his recent 
study [18] has raised the necessity of the 
existence of a mini-gradient in the parenchyma. 
According to him, an increased trans-mantle 
pressure is needed to balance CSF production 
and CSF absorption. These aspects will be 
included in the model. 

Due to the incompressibility nature of the 
brain tissue, the undrained Poisson’s ratio is very 
close to 0.5. In the present study, the drained 
Poisson’s ratio of 0.3 is used to consider the CSF 
discharge from parenchyma as the ventricles are 
assumed to be fully permeable. In reality, the 
CSF flow through the ventricles and the brain 

membrane is proportional to the difference in 
pressure on both sides. This aspect is not taken 
into account in the present model as data are 
missing. 
 
5. Conclusions 
 

A numerical slice model of one human brain 
is built in Comsol multiphysics using MRI and 
DTI data. Experimental voxel based data are 
imported into Comsol using linear interpolation 
functions. A transverse isotropic permeability 
tensor is introduced to model the CSF flow 
through the brain parenchyma under a given 
pressure gradient. The computed results clearly 
show the importance of such anisotropic 
properties notably in the CSF velocity field. 

The model presented here has to be further 
extended to 3D using MRI technique. 
Permeability in the brain surface and ventricles 
has to be introduced as well as sink and source 
terms to model CSF absorption and production.  

Finally, anisotropy in elasticity needs also to 
be considered in the model. This is planed with 
the help of the recently developed magnetic 
resonance elastography (MRE). 
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