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Abstract: This paper addresses the model-
ing of a complex glass forming process as an
example of a complex, nonlinear distributed
parameter system. The system is modeled by
a fluid dynamics approach, which means that
the forming is regarded as a fluid with free
surfaces. Here, the coupling of the forming
process with the heat flow is considered. The
influence of crucial model parameters (e.g., dy-
namic viscosity) to the shape of the glass tube
and the dynamic behavior is investigated by
means of simulation results.

1 Introduction

In a wide variety of industrial processes the
underlying physical phenomenon has to be
regarded as spatially distributed. Examples
are rheological forming processes in industrial
glass furnaces where heat conduction, radia-
tion, and fluid dynamics are the main physical
effects. In the manufacture of optical fibers,
the precise control of the diameter is critical
to the final performance of the product. It is of
significant interest to quantify the effects that
cause changes in the diameter.

For investigating, controlling, and optimiz-
ing such industrial processes, simulation mod-
els have become increasingly important over
the last few decades. The model would be very
helpful for following problems that are particu-
larly associated with the production of quartz
glass tubes: (1) investigation of ovality and
siding, (2) optimization of process and con-
struction parameters (e.g., design of tempera-
ture profile of the furnace), (3) investigation of
the influence of disturbances, and (4) design
and optimization of process control strategies.
The variation of only one parameter is nearly
impossible for an experiment based investiga-
tion, since many parameters naturally vary in
each production. The possibility to study the
influence of single parameters is the great ad-
vantage of a simulation based approach.
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Figure 1: Setup of the glass forming process.

The glass forming process is modeled by
a fluid dynamics approach, which means that
the forming is regarded as fluid with free sur-
faces [, [6] [7, 8]. The model can be simplified
by the assumptions of axisymmetric and thin
layer flow, i.e., wall thickness is much smaller
than the length of the forming zone. This leads
to the so-called Trouton model [6].

The main problem of correctly modeling
glass forming processes is the tremendous dis-
tortion during the forming process. The exist-
ing process models may be classified into two
groups []. The interface-tracking techniques
are based on updating the underlying mesh
as the glass flow evolves in order to track the
interface [9]. The main technique is the ar-
bitrary Lagrangian—Fulerian description that
is considered in this paper. The interface-
capturing techniques are based on both a flow
equation and advection equation governing
the time-evolution of an interface function [4],
such as the level set methods [2]. The objec-
tive of this paper is to extend and further de-
velop our finite element model [I] to be used
for industrial purposes.
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Figure 2: Components of the entire rheological forming model and their coupling terms.

2 Rheological Forming Model

The industrial process that is considered in
this paper is a complex rheological form-
ing process producing thin glass tubes from
thick cylinders. The main physical phenom-
ena arise from radiation, heat conduction, and
fluid dynamics. These industrial processes are
strongly nonlinear in particular due to the im-
pact of radiation and nonlinear material pa-
rameter laws. In addition, the forming pro-
cess involves a wide temperature range and is
characterized by large deformations.

The process setup is visualized in Figure
The cylinder is fed with slow velocity v¢ in an
oven where it is heated up to its forming tem-
perature. Below the oven the tube is pulled
with a higher velocity vs resulting in thin glass
tubes. The geometry of the resulting tubes
strongly depends on the velocities v¢ and v,
and the oven temperature Tyyep .

In this section, we present the components
of the mathematical model that can be used
to describe glass forming in general. This in-
volves solving the motion of the glass, the heat
flow, and nonlinear material laws. The in-
dividual components of the model and their
coupling terms are visualized in Figure

2.1 Forming and temperature model

In general, the state that uniquely describes
the complex rheological forming process does
not only depend on time but also on the spatial
coordinate r. The corresponding equations are
derived using a fluid dynamic approach, i.e.,
the forming is regarded as a Newtonian fluid
with free surfaces. Basically, the model con-
sists of two main parts describing (a) glass

motion and (b) heat flow in the glass.

The main goal is the accurate calculation
of velocity field u(r,t) : R? x R — R2, pres-
sure distribution p(r,t) : R x R — R and
temperature distribution T(-) inside the fluid,
i.e., in the solution domain £ € R2. In three-
dimensional space this yields a complex model
with high computational effort. For some as-
sumptions, a simpler flow model can be de-
veloped. Here, the process is considered to
be axisymmetric, e.g., the spatial coordinate
r = [r,z]" € R? consists of radius r and
height z. The coordinate frame characterizing
the forming process is depicted in Figure

Incompressible Navier—Stokes Equation
For the actual motion of the rheological material,
the governing equations are as follows

p% = V [—pl—i—n(V@—i—(V@)T)] + ...
—p(g-V)y—zf;Ug ;
Vu = 0. (1)

The first equation is the momentum balance; the
second one is simply the equation of continuity for
incompressible fluids. The density of the considered
material is denoted as p and the dynamic viscosity
is represented by 7.

For the considered forming process, conditions
are specified on the boundaries where the fluid is
supposed to enter the domain 2. The first is to set
the velocities equal to given vectors

U =u for r € o ,
for 7€ 0Qou .

The condition at the boundary 9Q.utside is specified
as a so-called open boundary. This implies that the
total stress in tangential direction is equal to zero.



Since the material parameters strongly depend
on the temperature, a model for the temperature
distribution T(r,t) in the glass tube is required;
described in the following.

Heat Transfer Equation
The heat flow in glass tubes can be described by the
energy equation for incompressible fluids as follows

oT
pcp— =V -(AVT)— pcyu-VT , (2)
ot S— N—\——
heat conduction ~ convection term

where ¢, denotes the heat capacity at constant pres-
sure and A the thermal conductivity. The convection
term is characterized by the velocity field u(r,t),
which needs to be derived by the aforementioned
Navier—Stokes equation.

The source driving the heating process is re-
stricted to radiation heat transfer. This is imposed
as a boundary condition by setting the gradient of
temperature at the boundary 0Qoutsiqe as follows

n- (AAT) = €0 (T(;lvenf T4) for Tre aQL')utside .

Here, n represents the inward normal vector, ¢ is the
surface emissivity, and o is the Stefan-Boltzmann
constant. For practical applications, the so-called
oven model needs to be identified as precise as pos-
sible. Basically, this model defines the profile of the
oven temperature Ten that strongly depends on the
geometry of the heating tube.

2.2 Nonlinear material parameter laws

The material parameters characterizing the form-
ing process vary strongly with the relevant tem-
perature range from 20°C up to more than
2000 °C. Temperature variations within this range
cause significant changes in the mechanical prop-
erties of the glass. Thus, tremendous nonlinear-
ities are introduced into the forming model
and temperature model . In the following, the
nonlinear material parameter laws are described
in more detail.

Dynamic Viscosity Model
In general, the dynamic viscosity n represents the
fluids resistance to the flow. In the case of glass, the
viscosity strongly depends on the temperature and
the range for varying temperature is relatively large.
It increases rapidly as a glass melt is cooled, so that
its shape will be retained after the forming process.
Typically the temperature dependance for the
viscosity of glass is given by the Vogel-Fulcher-
Tammann (VFT) relation. However, in order to con-
sider a more extended temperature range, the follow-
ing modified relation can be deduced

1
|0g (n):nmln'i‘i (nmax_nmin) (tanh (Cl T+02)+1) s
3)

where Mmin, Nmax, €1, and cz represent model parame-
ters to be identified. Figure[3]visualizes the viscosity
1 versus temperature T for certain model parame-
ters. It is obvious that the minimum and maximum
of the viscosity is respectively respresented by 7min
and 7max, Whereas c1 and ¢z characterize the actual
shape of the gradient.

Conductivity and Heat Capacity

In general, the conductivity and heat capacity char-
acterize the heat transfer through the rheological
material. The parameters depend on the actual tem-
perature; although the nonlinearity is less tremen-
dous as it is for the viscosity. Here, the following
equations are used

A=k\+ kT
cp =kt + k2 (T — kD)

conductivity

heat capacity

where k3, k3, k!, and k! denote model parameters
to be identified.
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Figure 3: Dynamic viscosity 7 vs. temperature 7'

2.3 Deformed mesh

The numerical simulation of the considered rheo-
logical forming process requires coping with strong
distortions of the continuum. In the continuum
mechanics there are two classical descriptions of
motion: (a) the Lagrangian and (b) the Eulerian
description. The pure Lagrangian description is
an approach where the mesh moves with the ma-
terial. This allows an easy tracking of surfaces;
however is restricted to relatively small displace-
ments. When the material motion is more compli-
cated, such as in the case of fluid flow problems,
the Eulerian description can be used. For such de-
scriptions the mesh remains fixed while the mate-
rial passes through it. The arbitrary Lagrangian—
Eulerian description (ALE) was developed in an
attempt to combine the advantages of aforemen-
tioned classical descriptions; their drawbacks were
minimized as far as possible [3,[9,[10]. It allows the
boundaries to move without the need for the mesh
to follow the material. Here, the ALE method is
used for simulating the forming process.



Free Surface Model

In order to follow the glass motion, the motion of
the moving mesh needs to be coupled to the mo-
tion normal to the surface. Therefore, the boundary
condition for the mesh equations on the free surface
OQoutside 1S given by

(ze,y)" n=u-n,

where (z1,y:)" is the velocity of the moving mesh
and n the boundary normal. In Figure the defor-
mation of an initial mesh using the ALE technique
is visualized for a rough mesh. It is obvious that the
boundary 9Qoutside follows the glass motion w(r,t)
without the mesh getting distorted.
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Figure 4: Arbitrary Lagrangian—FEuler mesh.

3 Simulation Results

In order to get an impression of the system behav-
ior of this complex, highly coupled, and nonlinear
process some characteristic stationary and time
dependent results are presented in this section. In
particular, the influence of single parameters in
the viscosity model to the shape of the glass
tube is investigated.

The initial/boundary conditions for the pulling
speed, feeding speed, and oven temperature are
assumed to be as follows:

pulling speed vyo = 0.2mm/s
vso = 2.0mm/s
Toven = 2300 °C

feeding speed

oven temperature

The temperature distribution and glass shape that
results from aforementioned conditions is visual-
ized in Figure [5] (a).

3.1 Time dependent results

For investigating the dynamics of the forming pro-
cess a step response with respect to the manip-
ulated variable pulling speed vs = 2 = lmm/s
has been performed. In Figure the response
of the temperature distribution and the glass
tube shape is depicted for different time steps
t € {0,500,1000,2000}s. It is obvious that the
step with respect to the pulling speed vs causes a
change in the diameter D below the heating tube.
Due to the coupling of the forming model with
the temperature model , the increasing diame-
ter respectively yields a change of the temperature
distribution inside the glass tube.

3.2 Variations in the viscosity model

A crucial parameter for the behavior of the form-
ing process is the dynamic viscosity 7, and espe-
cially its dependency on the temperature T'. Here,
the response to a step in pulling speed v is inves-
tigated for different assumed viscosity models. To
be more specific, the minimum viscosity 7min and
the maximum viscosity Jmax was varied as follows

Nmin € {4.7,4.9,...,5.9}
Nmax € {13.7,13.9,...,14.9}

The resulting set of viscosity models is visu-
alized in Figure [6][7] (a). The sensor position for
”"measuring” the diameter D has been placed at
height z = —0.2m in the simulation which is close
to the real position. Figure [6]/[7] (b) shows the re-
sponse of the diameter D below the heating for
different assumed viscosity models. It is obvi-
ous that the shape of the viscosity model n(T')
has a strong influence on the process dynamics.
Roughly speaking, for lower viscosity the dynamic
slightly increases and the overshooting decreases.
The influence of the dynamic viscosity 1 on the
glass shape and the velocity inside the glass is de-

picted in Figure [6}7] (c)—(d).

4 Conclusion and Future Work

In this paper, we have demonstrated the feasibil-
ity of simulating glass forming processes by means
of a fluid dynamics approach. The main compo-
nents consists of a forming model and a temper-
ature model. Compared to our previous research
work the coupling between these two components
were considered during the simulation. By this
means, the temperature distribution and deforma-
tion of glass tubes can be predicted throughout the
furnace.



(a) Glass form at t = 0s

(b) Glass form at ¢ = 500s

(c) Glass form at ¢ = 1000s (d) Glass form at ¢ = 2000s
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Figure 5: Response of temperature profile and glass tube shape to a step in pulling speed vs = 2 = lmm/s
for different time steps: (a) t = 0s, (b) t = 500s, (c) t = 1000s, and (d) ¢ = 2000s.

The model can be used to investigate the
influence of single parameters to the dynamic
behavior of the forming process. In this pa-
per, the influence of the wviscosity model to the
glass shape was particularly investigated. It
turned out that the viscosity is a crucial pa-
rameter that need to be accurately identified
for obtaining a precise model.

Future work is devoted to the investigation
of further parameters in terms of a sensitivity
analysis. In addition, the model parameters
need to be identified for a given forming pro-
cess, so that the model can be used for de-
signing control strategies and optimizing the
forming process.
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(a) Viscosity model 7 (T") (c) Diameter versus z at ¢t = 4000
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Figure 6: Simulation results for various viscosity models. (a) Set of viscosity models n(7") used for the
simulation. (b) Response of diameter D to step in pulling speed vs = 2 = lmm/s. Stationary profile of (c)
tube geometry and (d) velocity u. for different viscosity models.
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Figure 7: Simulation results for various viscosity models. (a) Set of viscosity models n(T") used for the
simulation. (b) Response of diameter D to step in pulling speed vs = 2 = lmm/s. Stationary profile of (c)
tube geometry and (d) velocity u. for different viscosity models.





