Sound Field Reconstruction in Low-Frequency Room Acoustics: A Benchmark Study With Simulation

THACH PHAM VU, ETIENNE RIVET, HERVE LISSEK

ACOUSTIC GROUP - SIGNAL PROCESSING LABORATORY LTS2, EPFL, LAUSANNE, SWITZERLAND

COMSOL Conference - Lausanne, 23/10/2018

Contents

Introduction

Sparsities in Low-Frequency Room Acoustic

Reconstruction procedures

Numerical Models and Validation

Introduction: Sound field in room at Low Frequencies (LF)

- Coupling with room by standing waves
- Uneven distribution of sound pressure in space and frequency domain

A thorough understanding of sound field in room is highly appreciated

Introduction: Reconstruction of sound fields in room

- Standard measurement techniques: Impractically high number of measurements
- Solution

Compressive Sensing:

Sparsities in LF room acoustics \rightarrow lower number of measurements for RIRs interpolation.

Need an extensive test of validity

^{*}R. Mignot, G. Chardon and L. Daudet, "Low Frequency Interpolation of Room Impulse Responses Using Compressed Sensing", in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 22, no. 1, pp. 205-216, Jan. 2014.

Contents

Introduction

Sparsities in Low-Frequency Room Acoustic

Reconstruction procedures

Numerical Models and Validation

A. Modal decomposition

- In LF room acoustic, the solution of the wave equation can be decomposed as discrete sum of damped harmonic eigenmodes

$$p(t,\vec{X}) = \sum_{n \in \mathbb{Z}^*} A_n \Phi_n(\vec{X}) e^{jk_n c_0 t}$$

 c_0 : speed of sound A_n : Expansion coeff. $k_n = (\omega_n + j\delta_n)/c_0$: wavenumber of eigenmode ω_n : eigenfrequency δ_n : damping coeff.

B. Modeshapes Approximation

Plane waves spherical sampling approximation of modeshapes

$$\Phi_n(\vec{X}) \approx \sum_{r=1}^R B_{n,r} e^{j\vec{k}_{n,r}\cdot\vec{X}}$$

 $B_{n,r}$: Expansion coeff. $\vec{k}_{n,r}$ wave vector with $\|\vec{k}_{n,r}\|_2 = |k_n| \ \forall r \in R$

Well adapted to non-rectangular rooms

Finite weighted sum of damped harmonic plane waves

Contents

Introduction

Sparsities in Low-Frequency Room Acoustic

Reconstruction procedures

Numerical Models and Validation

Reconstruction framework

$$p(t, \vec{X}) = \sum_{n,r} C_{n,r} e^{jk_n c_0 t} e^{j\vec{k}_{n,r} \cdot \vec{X}}$$

Objective: Through M measurements

- Estimate k_n 's for N modes
- For each mode n, define $\vec{k}_{n,r}$'s as spherical sampling vectors
- Find $C_{n,r}$ for each $\vec{k}_{n,r}$

Thach Pham Vu et al. 23/10/2018

Contents

Introduction

Sparsities in Low-Frequency Room Acoustic

Reconstruction procedures

Numerical Model and Validation

Numerical model

- FEM Analysis of a non-rectangular room model
- Lightly damped walls with $\alpha_{wall} = 0.01$
- 50 randomly placed measurement points
- Simulation data used for both input and validation
- Use broad-band response as input for the algorithm

Numerical Validation: 1. Time – Frequency response comparison

This is only for one interpolated position in the room \rightarrow not enough to assess the validity of the framework!

 \rightarrow Lack of spatial information

Numerical Validation: 2. Spatial Sound Field Reconstruction

- Sound field reconstruction of a rectangular-shaped area inside the room with distance at least 1m from each walls
- Avoid non-orthogonality of modeshapes near the walls

Numerical Validation: 2. Spatial Sound Field Reconstruction

Numerical Validation: 2. Spatial Sound Field Reconstruction

Numerical Validation: 2. Spatial Sound Field Reconstruction -A few more examples

Numerical Validation: 2. Spatial Sound Field Reconstruction 3D demo

Numerical Validation: 3. Higher Wall Damping

Numerical Validation: 3. Higher Wall Damping

Numerical Validation: 3. Higher Wall Damping

- Reconstruction maintains accuracy for regions not close to the wall
- Near-wall performance is not as good
 - Reasons:
 - Boundary is always harder for interpolation
 - Orthogonality of modeshapes functions is less valid
- Meaningful for assessing sound field control/manipulation

Conclusion

- Compressive Sensing Algorithm is valid for sound field reconstruction even in case of a non-rectangular room
- Reconstruction validated with different damping conditions
- Useful for assessing room acoustic and evaluating active/passive modal equalization methods
- Future work: boundary reconstruction improvement, reduce number of microphones

Thank you

COMSOL Conference - Lausanne, 23/10/2018