Numerical and experimental investigation of the gas - powder flows created by diverse coaxial nozzles during LMD process



### Elise FERREIRA

*M.* Dal, P. Peyre, C. Colin, G. Marion, D. Courapied, B. Macquaire



## **Outline of the presentation**

- The manufacturing process
  - Definition, applications
  - Goals and means of the study
- First model : gas flow in inert atmosphere
  - Numerical modeling
  - Experimental study
- Second model : gas flow in air-based atmosphere
  - CFD module
  - TDS module
  - Particle tracing
- Conclusions







# THE MANUFACTURING PROCESS







C2 - Restricted

## The manufacturing process

- Additive manufacturing process
  - Produce parts layer by layer
  - LMD : Laser Metal Deposition
- Complex deposit nozzle, multiple channels
  - Laser beam
  - Gas streams
  - Metallic powder jet
- Process application
  - Produce 3D new net shape components
  - Add of coating of functions
  - Repair technology







4 COMSOL Conference Lausanne 2018 / Elise Ferreira Ce document et les informations qu'il contient sont la propriété de Safran. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Safran.

## **Goals and means**

- Aim of the study :
  - Modeling of the powder supply
    - $\rightarrow$  gas flow modeling
    - $\rightarrow$  powder jet behavior



- Means of the study :
  - 3 diverse coaxial nozzles
    - Design
    - Gas flow rate
    - Number of gas channels
    - Function of gas channels





COMSOL Conference Lausanne 2018 / Elise Ferreira 5

## **FIRST MODEL**

# GAS FLOW IN INERT ATMOSPHERE







## Gas flow in an inert atmosphere

- Geometrical modelling
  - 2D axisymmetric model
- Gas properties and assumptions
  - Flows and external area : argon properties
  - Incompressible (Ma < 0.3) Newtonian gas flow</p>
  - High Reynolds number  $\rightarrow$  Turbulent flow
    - → RANS (Reynolds Average Navier-Stokes) models
    - $\rightarrow$  K- $\epsilon$  turbulence model





7 COMSOL Conference Lausanne 2018 / Elise Ferreira Ce document et les informations qu'il contient sont la propriété de Safran. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Safran. C2 - Restricted

### Turbulent gas flow in an inert atmosphere

Results and discussion





Ce document et les informations qu'il contient sont la propriété de Safran. Ils ne doivent pas être copiés ni communiqués à un tiers sans l'autorisation préalable et écrite de Safran.

#### 10 8 50 45 40 35 30 25 -2 20 -4 -6 15 -8 10 -10 5 -12 -14 ▼ 1.22 0 mm Gas behavior of nozzle A mm m/s 14 **4**.19 12 10 8 3.5 6 2 2.5 0 -2 1.5 -6 -8 0.5 -10 -12 -14 6.88×10<sup>-16</sup> 0 m Gas behavior of nozzle C

m/s 54.9

12

## **Experimental setup**

- Pitot tube :
  - Differential pressure anemometer
  - Localized fluid velocity measurement
  - Bernoulli's equation (for Re > 100) :







## **Experimental setup**

#### Results



Comparison





10 COMSOL Conference Lausanne 2018 / Elise Ferreira

## **SECOND MODEL**

# GAS FLOW IN AN AIR-BASED ATMOSPHERE







## Laminar gas flow in an air-based atmosphere

- Multiple physics
  - Argon and air atmosphere interaction
  - Powder stream behavior







#### 12 COMSOL Conference Lausanne 2018 / Elise Ferreira

## Laminar gas flow in an air-based atmosphere

argon Multiple physics Argon and air atmosphere interaction Powder stream behavior **PHYSIC 1** Laminar compressible flow (CFD) **PHYSIC 2** Convection and diffusion (TDS) Kelvin-Helmholtz -Wd instabilities  $\frac{\partial c}{\partial t} + \nabla \cdot (-D\nabla_c) + u \cdot \nabla c = R$ velocity shear at the  $N = -D \nabla c + u_c$ interface of two fluids with C = 100% $\rho_{mix} = c \,\rho_1 + (100 - c) \,\rho_2$ different densities air with D the diffusion coefficient and c: the seek concentration of the gas flow **PHYSIC 3** Particle tracing

*C* = 100%



13 COMSOL Conference Lausanne 2018 / Elise Ferreira

#### C2 - Restricted

## Laminar gas flow in an air-based atmosphere

### Multiple physics

- Argon and air atmosphere interaction
- Powder stream behavior





# CONCLUSIONS







## Conclusion

 COMSOL Multiphysics software allowed the analysis of the powder delivery system of the LMD process

#### CFD & Transport of Diluted Species modules

- Behavior of the gas flow
- Partly confirmed with experimental study
- Impact of the nozzle design, gas configurations and air-based external area

#### Particle tracing module

- Powder stream behavior
- Particle size influence

