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CCACCA--impregnated woodimpregnated wood

�� CCA stands for CCA stands for 
Chromated Copper Chromated Copper 
ArsenateArsenate

Preserves wood from Preserves wood from 
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�� Preserves wood from Preserves wood from 
insects, fungi and insects, fungi and 
water damagewater damage

�� Decks, fences, utility Decks, fences, utility 
poles, playground poles, playground 
equipment…  equipment…  



CCACCA--impregnated woodimpregnated wood
�� Since 1970, phaseSince 1970, phase--out in 2005 out in 2005 
�� Nowadays restricted to a limited number of industrial applicationsNowadays restricted to a limited number of industrial applications
�� Classified as hazardous wasteClassified as hazardous waste
�� Service life of 10Service life of 10––40 years: disposal will continue long into the future40 years: disposal will continue long into the future
�� Worldwide problem (U.S.: peak disposal rate of 9.7 million m³ Worldwide problem (U.S.: peak disposal rate of 9.7 million m³ 

wastewood in 2008)wastewood in 2008)
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wastewood in 2008)wastewood in 2008)
�� Need for a sustainable disposal methodNeed for a sustainable disposal method



Low T Low T -- carbonisationcarbonisation
�� Promising technologyPromising technology

�� < 370< 370°°CC
�� Wood chips are converted to Wood chips are converted to 

carbon and volatile organic carbon and volatile organic 
compounds: energy recuperationcompounds: energy recuperation

�� Material recuperation: Material recuperation: 
Heavy metals remain in solid Heavy metals remain in solid 
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�� Heavy metals remain in solid Heavy metals remain in solid 
phasephase

�� Carbon productCarbon product

�� Low tar production/emission Low tar production/emission 

�� Simulation modelSimulation model
�� Influence of operational Influence of operational 

parametersparameters
�� Optimal working conditionsOptimal working conditions
�� Controlling metal and tar Controlling metal and tar 

emissionsemissions



Description of the mathematical Description of the mathematical 
modelmodel

�� Model assumptionsModel assumptions

�� Governing equationsGoverning equations

�� SubmodelsSubmodels
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�� SubmodelsSubmodels

�� Initial and boundary conditionsInitial and boundary conditions

�� Numerical SolutionNumerical Solution



Model assumptionsModel assumptions

�� Volume Averaging Volume Averaging –– continuum approachcontinuum approach
�� 1D anisotropic porous medium1D anisotropic porous medium
�� reaction products are lumped into three main reaction products are lumped into three main 

groups: char, tar and volatilesgroups: char, tar and volatiles
Only AsOnly As--Oxide consideredOxide considered
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�� Only AsOnly As--Oxide consideredOxide considered
�� Cu, Cr very stableCu, Cr very stable
�� bound, condensed, gaseousbound, condensed, gaseous

�� Water: bound, vapor Water: bound, vapor 
�� Solid and gas phase at different TSolid and gas phase at different T
�� No secondary reactions (low T)No secondary reactions (low T)

�� Cracking of tarsCracking of tars
�� Secondary char formationSecondary char formation



Governing equationsGoverning equations

�� Continuity gas phase Continuity gas phase 

�� Darcy LawDarcy Law
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�� Species conservationSpecies conservation



Governing equationsGoverning equations

�� Energy conservationEnergy conservation
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SubmodelsSubmodels
�� Drag force; heat and mass dispersionDrag force; heat and mass dispersion

�� Darcy coefficientsDarcy coefficients

�� Dispersion tensorDispersion tensor

�� Experimentally determined (Govaerts & Mayerhofer, 2010)Experimentally determined (Govaerts & Mayerhofer, 2010)

�� Convective heat transferConvective heat transfer
(Wakao & Kugei, 1982)(Wakao & Kugei, 1982)

1/3 0.6(2 1.1Pr Re ) /h k dξ= +
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(Wakao & Kugei, 1982)(Wakao & Kugei, 1982)

�� Solid conductivitySolid conductivity

(Yagi & Kunii, 1957)(Yagi & Kunii, 1957)
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SubmodelsSubmodels

�� Thermal degradation of woodThermal degradation of wood
1

2
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�� No secondary reactions No secondary reactions 
(cracking/secondary char formation)(cracking/secondary char formation)

3( )wood char k →



SubmodelsSubmodels
�� AsAs--release release 

�� first order single reaction scheme with a first order single reaction scheme with a 
Arrhenius temperature dependency. Arrhenius temperature dependency. 

�� A A = 6.5 = 6.5 ×× 1010--3 s3 s--11 and and EEaa == 20.4 kJ/mol. 20.4 kJ/mol. 
((Helsen and Van den Bulck, 2000)Helsen and Van den Bulck, 2000)
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((Helsen and Van den Bulck, 2000)Helsen and Van den Bulck, 2000)

�� AsAs--release is restricted to range of 280release is restricted to range of 280°°CC--450450°°CC

�� AsAs--condensation/recondensation/re--evaporation: diffusionevaporation: diffusion--
limitedlimited

,
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SubmodelsSubmodels
�� Drying/condensation: diffusionDrying/condensation: diffusion--limitedlimited
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�� To avoid overTo avoid over--and undershoots Heaviside and undershoots Heaviside 
functions are usedfunctions are used

1/3 0.6with (2 1.1Sc Re ) /m g pk D d= +



Latest addittions: Latest addittions: 
AsAs--release/condensationrelease/condensation

�� AsAs--release is restricted to range of 280release is restricted to range of 280°°CC--
450450°°CC

�� AsAs--condensation/recondensation/re--evaporation: diffusionevaporation: diffusion--
limitedlimited
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Boundary and initial conditionsBoundary and initial conditions

�� Initial conditionsInitial conditions

�� Ambient temperature, Ambient temperature, 
pressurepressure Vsolid
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pressurepressure

�� VVgg = 0= 0

�� Boundary conditionsBoundary conditions

�� Inlet: TInlet: Tgg=370=370°°C, VC, Vgg=V=Vinin

�� Outlet: P=POutlet: P=Patmatm; gradients=0; ; gradients=0; 
VVsolidsolid



CouplingsCouplings
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Solid Species eq.Solid Species eq.

Gas Species eq.Gas Species eq.

TTs, s, CCp,sp,s

SSgg
SSkk

MMgg

CCp,gp,g
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Gas Energy eq.Gas Energy eq.

Solid Energy eq.Solid Energy eq.

Darcy eq.Darcy eq.

Gas densityGas density

Gas velocityGas velocity

SSThTh

TTgg

hhsgsg



Numerical solutionNumerical solution

Solve gas & solid species 
conservation equation
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Update physico-chemical properties
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Update physico-chemical properties

Convergence?

t = tmax ?
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Solve Darcy & Energy equations



Simulation ResultsSimulation Results

�� ObjectivesObjectives

�� Maximise wood conversion and char Maximise wood conversion and char 
productionproduction
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productionproduction

�� Minimise tarMinimise tar-- and Asand As--emissionemission

�� Short hot zoneShort hot zone

�� Long cold zoneLong cold zone



Simulation ResultsSimulation Results
�� drying efficiency of about 100% drying efficiency of about 100% 

�� wood conversion of 99.4 %, wood conversion of 99.4 %, 

�� 29.9% charcoal29.9% charcoal

�� 22.1% volatiles 22.1% volatiles 
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�� 47.4% tars  47.4% tars  

�� No condensation of tar and secondary char formationNo condensation of tar and secondary char formation

�� tar emissions are probably overestimatedtar emissions are probably overestimated

�� the overall product efficiency of the process underestimated. the overall product efficiency of the process underestimated. 

�� Relative mass and energy balance errorsRelative mass and energy balance errors

�� 0.029 % 0.029 % 

�� --0.077 %0.077 %



Simulation ResultsSimulation Results
Axial temperature profile at nominal flow ratesAxial temperature profile at nominal flow rates
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Simulation ResultsSimulation Results
Axial AsAxial As--oxide concentrations at nominal flow ratesoxide concentrations at nominal flow rates
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�� 13.2 % of the initial As is 13.2 % of the initial As is 
released due to thermal released due to thermal 
decomposition decomposition 

�� 12.9 % of the initial As12.9 % of the initial As--
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�� 12.9 % of the initial As12.9 % of the initial As--
content will leave the reactor content will leave the reactor 
as a volatile compound. as a volatile compound. 

�� 0.3% gets condensed in the 0.3% gets condensed in the 
middle part of the reactor. middle part of the reactor. 

�� adsorption/desorption, adsorption/desorption, 
formation of stable metalformation of stable metal--
mineral compounds not mineral compounds not 
consideredconsidered



ConclusionsConclusions

�� model for the simulation of the thermochemical decomposition of model for the simulation of the thermochemical decomposition of 
CCACCA--wood in a packed bed reactor.wood in a packed bed reactor.
�� unsteady, oneunsteady, one--dimensional conservation equations of heat and mass for dimensional conservation equations of heat and mass for 

the solid and the gas phase, the solid and the gas phase, 
�� Darcy’s lawDarcy’s law
�� a competitive reaction mechanism for wood decompositiona competitive reaction mechanism for wood decomposition
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�� a competitive reaction mechanism for wood decompositiona competitive reaction mechanism for wood decomposition
�� drying drying 
�� arsenic oxide release/condensation.  arsenic oxide release/condensation.  

�� This model allows to investigate the influence of design parameters This model allows to investigate the influence of design parameters 
(e.g. the volumetric flow rate of the hot gas supplied at the bottom (e.g. the volumetric flow rate of the hot gas supplied at the bottom 
and wood residence time) and wood residence time) 
�� product distributionproduct distribution
�� AsAs--release release 
�� temperature profiles temperature profiles 




