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Abstract: In this paper, we present a first 

model carried out with Comsol Multiphysics® 

to model bread baking, considering heat and 

mass transfer coupled with the phenomenon of 

swelling. This model predicts the pressures, 

temperatures and water contents evolutions in 

the dough for different energy requests. First 

results obtained are analyzed according to 

various physical parameters in order to better 

apprehend interactions between the various 

mechanisms in the porous matrix. 
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1. Introduction 
 

With energy consumption close to  

300 000 tons-equivalent-oil per year, bread 

baking represents a non negligible part of the 

energy demand of the French Food sector. An 

improvement of the energy efficiency of the 

oven would make it possible to reduce the 

energy request for this sector and consequently 

the CO2 emissions. Before the optimization 

phase, it is necessary to evaluate the energy 

needs of the product. This stage needs an 

increased knowledge and a modeling of the 

transfer mechanisms in the product, here, a 

porous medium: bread. Bread is a complex 

medium in which occur of many physical 

phenomena during baking: heat and mass 

transfers (CO2, liquid water, vapor water), 

swelling with the formation of a porous 

structure and various physico-chemical 

reactions (gelatinization, surface browning: 

Maillard reaction…). 

In this paper, we present physical model 

designed to describe mass and heat transfer 

within the porous material during baking. The 

second part describes the numerical model 

implemented and the simulated results 

obtained. 

 
Figure 1. Heat and mass phenomena in bread. 

 

2. Governing equations 

 

A mathematical model based on heat and 

mass transfer in porous media is used to model 

the baking of bread. It is derived from mass 

balance of constituents in different phases: 

liquid water (l), water vapour (v), CO2 gas 

(CO2). The state variables are the temperature 

T, the water content W and the total gas 

pressure Pg. This conservation-based approach 

was developed for drying theory by Whitaker 

[1] and Philip and De Vries [2] and used by 

another authors (Zhang et al. [3]). 

 

2.1. Hypothesis 

 

In this problem, the hypotheses used are: 

• medium is homogeneous, 

• local thermodynamic equilibrium is achieved, 

• liquid phase (l) is not compressible: ρl = cst, 

• the gaseous phase (g) consists of a perfect 

blend of gas: carbon dioxide (CO2) and 

vapour (v), whose equations read as follows: 
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• radiation and convection are negligible 

within the material, 

• moisture content is the fraction between 

liquid water mass and dry solid mass: 
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Excerpt from the Proceedings of the COMSOL Conference 2010 Paris

http://www.comsol.com/conf_cd_2011_eu


2.2. Mass conservation 
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These equations show the matter flows, 

which are derived from the Fick’s law for 

diffusion and by Darcy’s generalised equations 

giving the mean filtration velocity fields of the 

liquid and gaseous phases. 

Liquid water flux 
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Liquid water diffusion in bread is only due 

to capillary diffusivity. The measurement of 

capillary pressure is difficult to obtain, so we 

have used an expression of the diffusion 

coefficient obtained by Ni et al. [4], with the 

parameters of Zhang and Datta [5]. 

( )ερ WCD sk

W

l 28.2exp2 +−=  

with ε, the porosity and Ck2 = 10
-6

 a 

coefficient. 

Vapor flux 

( )
veff

i

g

i

gg

g

rgi

vv
DgP

kk
n ωρρ

µ
ρ ∇−−∇−=

rrrr
 

ωv being the mass fraction of the vapour in the 

gaseous phase, given by: 
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Moisture content equation 

This equation is established by liquid 

water and vapour mass conservation equation 

sum. 
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Terms with beta coefficient are obtained 

from vapor phase conservation equation. By 

including the gradients of the state variables in 

the expressions of mass flow, the diffusion 

coefficients appear (see appendix). This model 

is based on Salagnac et al. [6] developments. 

Energy conservation equation 

Heat transfer occurs in three forms: 

conduction, convection and latent heat moved 

outward by the vapor diffusion. The 

convective term is negligible compared to the 

latent heat: 
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with 
gpglplspsp CCCC ,,, ρρρρ ++=  and λ, 

the effective thermal conductivity. The 

necessary energy for the water vaporisation is 

obtained by the product of the phase change 

rate K and the latent heat of vaporisation Lv. 

The evaporation rate, K, is given by Zhang and 

Datta [3] and, obtains with the liquid water 

conservation equation: 
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Gas pressure equation 

The equation for the total pressure of the 

gaseous phase Pg is obtained from the readings 

of the mass balance on CO2. 
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2.3. Boundaries conditions 

 
The boundaries conditions on air/bread 

interface are for: 

Heat equation 
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with h, the heat coefficient (convection and 

radiation phenomena). 

Water content equation 

Evaporated mass flux is equal to the sum 

of liquid water and vapor water flux. 
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Evaporated mass flux on surface is given 

by: 
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Gas pressure equation 

Atmospheric pressure is considered on 

bread surface. 

atmg
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3. Physical properties and parameters 

 

Physical properties are chosen for typical 

French bread. 

 

Vapor pressure and water activity 

Vapor pressure is obtained by an equilibrium 

approach. 

vswv
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The water activity (aw) have been 

determined by Lind and Rask [7], Vanin [8], 

Jury [10], Zhang and Datta [5] with different 

models. 
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Figure 2. Activity models for bread. 

 

The Oswin model fitted by Zhang and 

Datta [5] is used. 
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Thermal conductivity 

Heat transfer in the porous media is 

described by two phenomena, conduction and 

evaporation-condensation. Two solutions are 

developed in bibliography, some authors use 

multiphase model of conductivity and others 

an experimental effective conductivity. In this 

paper, an effective conductivity, taking into 

account evaporation-condensation and 

conduction phenomena has been used. The 

values of thermal conductivity come from 

experimental data of Jury et al. [10] and have 

been fitted by Purlis and Salvadori [11]. 
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Figure 3. Effective thermal conductivity. 

 

Diffusivity of vapor water in CO2 is given by: 
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Table 1: Input parameters. 

 

Parameters Values Units 

Initial moisture content, W0 0.54 kg of water/kg of dry solid 

Initial temperature, T0 27 °C 

Initial pressure, Pg0 1.013 105 Pa 

Initial dough density, 
0

ρ  305.4 kg/m3 

Intrinsic density of solid matrix, 
i

s
ρ  705 kg/m3 

Initial porosity 0.72 - 

Oven gas temperature, Tair 190 °C 

heat transfer coefficient, h 10 W/(m2.K) 

Convective mass transfer coefficient, km 0.01 m/s 

Vapor pressure in surrounding air, Pv, inf 0 Pa 

Gas intrinsic permeability, k 2.5 10-12 m2 

Gas relative permeability, krg 
9.0for         0

9.0for  1.11

>

≤−

S

SS  
- 

Standard binary diffusivity, Dvc 2 10-5 m2/s 

 



Bread swelling 

To simulate the volume expansion of the 

bread, different mechanical models exist (Zhang 

[13], Vanin [8]). In first approximation, we 

introduced into the model a deformation of the 

bread coming from numerical results (Zhang 

[13]). In this case, the volume expansion is a 

function of time and is given by a radius 

expression: 
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4. Numerical model 
 

The numerical model was programmed with 

Comsol Multiphysics®. The geometry is 2D 

cylindrical. The initial radius of bread is  

36.5 mm. A mobile triangular meshing (ALE) 

with 548 elements is used. 

 
Figure 4. Geometry and mesh. 

 

The equations are simultaneously resolved 

with a free step time by the solver UMFPACK. 

A baking of 15 min is calculated in 47 s. All 

equations are implemented with PDE 

formulations in general form time dependant: 
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with u the variable corresponding to T, W and 

Pg. Equations have to be identified in different 

PDE terms. It is difficult to implement an 

equilibrium approach in commercial software 

due to divergence of heat source term 

corresponding to phase change. The choice of 

general form makes it possible to introduce this 

approach. 

Heat source term has been modified to 

correspond to the PDE general form: 
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5. Results 
 

Simulation has been realised for a 15 min 

baking in an oven at 190°C. Simulated results are 

compared with Zhang and Datta [13] 

experimental data. 

Figure 5 presents the evolution of 

temperature obtained in the center and at 1.5 mm 

of the surface. 
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Figure 5. Temperatures in bread. 

 

Temperature evolutions of numerical model 

are in good agreement with experimental data. 

The surface temperature increases until the end 

of baking. At 8 min, the slope break of the curve 

shows the phenomenon of evaporation. In the 

center of bread, the temperature increases but 

stay under 100°C. 

Figure 6 presents the evolution of mean 

moisture content. 
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Figure 6. Mean moisture content in bread. 

 

Moisture content evolution corresponds very 

well to experimental data. The quantity of liquid 



water decreases almost linearly with time during 

baking. 
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Figure 7. Local moisture content in bread. 

 

As for the local moisture contents, one 

notices a light increase in moisture content in the 

center of the bread (dough) during baking. This 

phenomenon is caused by the evaporation-

condensation phenomenon in crumb. In surface 

(crust), moisture content decreases in few 

minutes. This evolution corresponds well to 

typical baking evolution (Wagner [14]). 

 

6. Conclusion 
 

A mathematical model has been developed 

for bread baking. The numerical model has been 

computed with Comsol Multiphysics® in 

deformed mesh. Deformed mesh provide to 

model bread deformation during baking. Some 

modifications have been used to compute phase 

change in heat transfer equation. Temperature 

and moisture content evolution are in good 

agreement with experimental data. 
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9. Appendix 
 

Vapor diffusion coefficients: 
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CO2 diffusion coefficients: 
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Other coefficients: 
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