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Abstract: A compacted bentonite clay buffer is
planned to be used as a part of the engineered
barrier system in the KBS-3 concept for the
disposal of spent nuclear fuel. Simulations
together with experimental studies are needed to
ensure that bentonite fulfills its safety functions
in the concept. In this paper, one type of
bentonite model, namely a thermomechanical
model developed by Petri Jussila, is presented in
brief and its numerical implementation with
COMSOL Multiphysics 4.0a is discussed. The
model describes bentonite as a mixture of four
components: solid skeleton, liquid water, water
vapour, and air. The system is defined by basic
balance laws along with the somewhat complex
constitutive equations that are based on a
thermomechanical approach. Previously, the
model has been implemented with software
called Elmer by CSC – IT Center for Science and
with an in-house code Numerrin by Numerola
Oy that has made some extensions to the model.
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1. Introduction

 A compacted bentonite clay buffer is planned
to be used as a part of the engineered barrier
system in the KBS-3 concept for the disposal of
spent nuclear fuel (Figure 1). After installation,
the compacted bentonite buffer should swell to
isolate the canister from flowing groundwater.
On the other hand, the buffer should still stay
loose enough to protect the canister from
mechanical disturbances. In order to meet these
two needs, both experimental and modeling
studies have to be carried out. In this paper, a
thermomechanical approach of modeling the
saturation of the buffer is considered. The
somewhat complex model that is presented here
is developed by Petri Jussila and we advise the
interested reader to see [1], [2], and [3] for
details.
  In the model, water can enter the pore space
of a solid skeleton of the bentonite as liquid or

vapor. Also the evaporation of the liquid water is
considered in the model since in reality the water
can evaporate near the canister that is heated by
the decaying spent nuclear fuel. Water vapor
form the gas phase of the model together with
air. Moreover, the solid skeleton can deform and
develop stress due to the incoming water.
Thereby, the model includes deformation and
transport of the four constituents according to
balances of mass, linear momentum, and energy
that are completed by constitutive laws.

Figure  1. A schematic figure of the KBS-3 disposal
concept. [4]

2. Theory

 In this section, we describe the steps to
derive the final equations of the model. The steps
are: choosing the variables of the system, writing
the balance laws, describing a procedure to
derive thermodynamically consistent constitutive
equations from the free energies and the
dissipation function, choosing the free energies
and the dissipation function, and, finally,
substituting the material laws into the simplified
final equations.
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2.1 Constituents, the state and the dissipative
variables

In the model, the constituents of bentonite are
solid skeleton (s), liquid water (l), water vapor
(v) and air (a). Their molar volume fractions are

s , l , v , and a , respectively.  The fractions
have to be positive and add up to one, that is:

k 0 for k=s,l,v,a  and

s l v a 1 .

The other state variables are the intrinsic (or
bulk) densities k , the strain , and the
temperature T . The dissipative variables (the
rate of deformation D , velocities kU , heat flux
q , and evaporation rate l  ),  of  the  system
describe the dissipative behavior of the system.

2.2 Balance laws

Balance laws for the mass of solid, liquid water,
water vapor, air, linear momentum, and energy
are simply:
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where k  are the apparent densities of the
constituents,  the Cauchy stress tensor, g  the
gravitational acceleration, eff( )c  the effective
specific heat, v le e  the internal energy

difference of the liquid water and vapor, and
the total heat conductivity. The apparent
densities relate to intrinsic (or bulk) densities by

k k k . For solid and liquid the bulk
densities are constant while for gases they are
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 where B̂  is the gaseous pressure.

2.3 General constitutive relations

In this section, we describe a procedure that can
be used to derive constitutive equations which do
not violate the second law of thermodynamics.
As a result of the procedure, the constitutive laws
can be obtained by defining only the constituent
free energies k  and the dissipation function .
The Clausius-Duhem inequality for mixtures is

:
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where k  is the rate of entropy production, k

is the constituent k  free energy and ks  the
constituent specific entropy. We can define the
dissipation function  with this inequality by

C-D k
k

T .

On the other hand, the dissipation function has to
obey the principle of maximal rate of entropy
production. Thereby, if we have j  generalized,
mutually independent irreversible forces k,jX

and fluxes k,jJ , the dissipation function has to be
the solution to the maximum problem
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The solution of the problem implies that the
dissipation function can be expanded as

max k,j
k,jj,k

:
1

J
J

where  is the Lagrangian multiplier of the
maximum problem. If the dissipation function is

chosen to be quadratic, the coefficient
1

becomes 1
2

. Now, using the already chosen

dissipative variables and marking the dissipation
defined by Clausius-Duhem inequality and the
maximum principle equal, that is

C-D max ,

we have the general constitutive relations that
connect the state and dissipative variables to the
free energies and the dissipation function. The
relations are
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where superscript D  means deviatoric part, k  is
the interaction pressure. Now the free energies
and dissipation function have to be chosen to
complete the mathematical description of the
system.

2.4 The constituent free energies and the
dissipation function

The free energies cover the reversible individual
behaviors of the constituents and their mutual
interactions. Chosen interactions in the model are
mixing of gaseous constituents, adsorption and
swelling between the liquid and solid
constituents. The specific free energies are for
solid:
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Here k
vc  is  the specific heat  at  constant  volume,

G  the glide modulus, K  the bulk modulus, kM
the molar mass, R  the universal gas constant,
f  an adsorption function, f  a swelling

function, and 0B̂  is a reference pressure. I  is the
indicator function taking care of the restrictions
for the volume fractions:

k k
k

0 if 1 and 0,
,

+ otherwise
I

where k {s,l,v,a} . The other indicator function
J  restricts the changes in the constant intrinsic
densities of the solid and the liquid water:

k k,00 if
+ otherwise

J .

The mixing interaction of the gaseous
constituents is described in the terms including
multiplier / kRT M . The term that includes
adsorption function defines the energy that is
restored in the adsorption mechanism. Moreover,
the term that includes the swelling function
describes how the energy is stored to the solid
when the solid swells. The shapes of the
functions are discussed below.
 The chosen dissipation function is
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where k  is the thermal conductivity, k  the
dynamic viscosity, kk  the permeability,

g l v a for liquid and  for gas , D  the

diffusivity, v / g  is the vapor fraction,

kV   the velocity of the liquid, vapor and air with
respect to the solid, v a(1 )V V V is the
weighted velocity of the gas, and

vg v gV V V . The first sum is the dissipation
due to the thermal effects, the second sum is the
dissipation due to the moving liquid and gases,
and the last term is the dissipation due to the
relative movement of the vapor and air.

2.5. The final equations to be solved and the
material laws

Substituting the free energies and dissipation
function in the general constitutive relations and
manipulating the equations, we obtain the final
model that can be solved. The final variables of
the system are molar volume fractions

s l v a, , , ,  displacement u , gaseous pressure

B̂ , and temperature T .  The evaporation rate of
liquid  is used as an auxiliary variable. This
strategy is adopted from Numerola with minor
changes. The final system to be solved is

s l v a 1

s
s s· 0

t
U

l
l l l·

t
U

v
v v l·

t
U

a
l a· 0

t
U

s· 0g

eff v l l( ) ( ) ·( ) 0Tc e e T
t

0

v 0 0
v l

0 0 l

l

l

ˆ
ln ˆ( )

ˆ ˆ
( )

( )

pp

B
B

M T T B BTL c c Tln
RT T T

f



2v
s 0 s

l l l

1ˆ tr (tr )
2

M f KB
RT

.

with constraints

k 0 for k=s,l,v,a .

The last equation is a generalized version of
Clausius-Clapeyron equation which is obtained
from the general constitutive equations. In the
above equations system, the stress-strain relation
is
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and the gaseous phase state equation is
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The modified Darcy’s law for liquid water, water
vapor and air are
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where the effects of gravity on gas and the direct
solid deformation effects on liquid are neglected.
Fourier’s law for heat conductions is

Tq

and the internal energy difference in the energy
balance equation is

v l 0 v 0 vl( )( ) /ppe e l c c T T RT M .

Adsorption and swelling functions are

2

1
0 0

0

 for

0 for

a
s s s s

l l l l

s s

l l

a
f

2
s s

3 4
l l

5f a a a
xi xi

.

The adsorption function has been chosen so that
it increases upon drying and decreases upon
wetting in a way that adsorption and suction
interactions vanish in fully saturated bentonite.
This means that water is attached firmer to the
solid skeleton of dry bentonite than to the
skeleton of wet bentonite. The swelling function
has been chosen such that the swelling
interaction decreases upon wetting and vanishes
at the fully swollen state. This, again, means that
the solid skeleton in dry bentonite can store more
“swelling” energy per volume change than the
solid skeleton in wet bentonite. In a non-
confined space this energy makes the solid
volume to increase and in confined space it
develops a swelling stress.

The mechanical parameters are
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Finally, the thermal parameters for Febex
bentonite are [3]

s 2
J J1.38 ( 273.15K) 732.5
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where s/ 1l . We advise interested
reader to see [3] for details, initial values, and
values at the reference state.

3. Use of COMSOL Multiphysics

The  model  has  been  implemented  with
COMSOL Multiphysics 4.0a. Structural
mechanics module with basic solid mechanics
mode is used for the momentum balance
equation. The modified glide and shear moduli
are used instead of normal constant values. The
effect of B̂  and the swelling function has been
implemented by using a weak contribution. The
rest of the equations are implemented by using
PDE interfaces mode with General Form PDE of
the Mathematics package.
 The implementation of the model is at test
state, thereby no final solutions strategy or solver
choice can be given here. For now, we solve the
liquid, air and vapor mass balance equations
together with the energy balance equations and
Clausius-Clapeyron equation as fully coupled
problem. Then the momentum balance and mass
balance for the solid are solved separately. This
strategy is adopted with minor changes from the
implementation of the CSC – IT Center for
Science [3].

 The time-dependent solver that we use for
now  is  the  order  one  BDF,  that  is,  the  implicit
Euler. Nonlinear solver is used with a high
number of iterations which allows us to use
relatively long time-steps. This strategy has been
adopted from Numerola’s implementation.
Linear systems are solved with MUMPS.
 The indicator functions in the free energies
should automatically keep the system within the
limits that the restrictions on the molar volume
fractions give. At some points of the equation
manipulation, however, the indicator functions
are neglected. Therefore, constraints on the
molar  volume  fractions  may  have  to  be  used  in
the numerical implementation. A problem with
this approach is that the constraints generate
constraint forces that are not necessarily the
intended ones. Thereby, we may alternatively
use smoothed indicator functions that are carried
through the equation manipulations to the final
equation system in the future. These indicator
functions would act as one sort of physical
penalty functions.

4. Discussion

The model presented here is one approach to
model the saturation of compacted bentonite.
The model concentrates on the thermo-hydraulic
behavior of compacted bentonite on macro level
which means that the model leaves some
questions open of the behavior of the compacted
bentonite. One such question is related to the
hydraulic parameters used in the model. The
porous space of bentonite is divided into
interlaminar porous space and free porous space,
both of which have been covered by a single
porosity in the model.  Therefore, the model here
cannot take into account the dependency of
hydraulic parameters on the water content in
these different pore types. These effects are
incorporated in the model only by using a
hydraulic permeability fitted into experimental
results  which  means  that  new  fit  has  to  be
produced if anything changes in the modeled
case.
 In general, no chemical effects are included
in the model. The behavior of bentonite,
however, strongly depends on the chemical
composition of the intruding water and on the
type of interlaminar cations. Not taking these
effects into account in the model directly simply
means that they are present somehow in the



model parameters. Therefore, at least some of the
model parameters have to be fitted separately for
each water-bentonite combination. This feature
weakens the prediction capability of the model.
 The mechanical behavior and the swelling
have been incorporated in the model by “crude
approach” by the developer’s words. Especially
the dynamics of the mechanical behavior may
need fine tuning. Moreover, the model does not
take plastic behavior of bentonite into account
although it has been observed experimentally in
wetting test [3].
 Despite the fact that the model does not
include everything, it provides a means to add
new features. Further, the procedure used in
deriving the final equations of the model may be
used to develop virtually any kinds of
thermodynamically sensible models.
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