On the Drying Dynamics in Biofilters

Prof. Dr. Friedhelm Schönfeld

Hochschule RheinMain
University of Applied Sciences
Wiesbaden Rüsselsheim Geisenheim

FB Ingenieurswissenschaften

On the Drying Dynamics in Biofilters → OUTLINE

- Motivation / Introduction on Biofilters
- Governing equations of Flow & Drying
- 1-D model (Mathematica)
- 2-D and 3-D models (COMSOL)
- Summary of Results & Outlook

Motivation / Introduction

High-Performance Container BF:

application areas:

paint spraying shops, breweries, chemical industries, landfills, foundries, coffee & cocoa roasting, plastics processing, food processing, mushroom cultivation, fish-smoking, residual waste treatment, slaughterhouse, rubber - and plastic industries ...

Motivation / Introduction

The art of operating BFs:

- +
- +
- + Keep the right amount of water:

too much water → agglomeration / clogging too little water → complete drying

- How does the drying in BFs occur?
- Are heterogeneities in the moisture cured with time or do they increase?
- Drying dynamics?

Governing Equations / 1-D Model

y=y(t): average volume fraction of liquid water within the pores

 $y = 1 \rightarrow$ completely filled (clogging)

 $y = 0 \rightarrow$ completely dried out

0<y<1 →

The effective porosity depends on the moisture content, e.g.:

$$\varepsilon = \varepsilon(y) = \varepsilon_0(1-y)$$

1-D model:

Governing Equations / 1-D Model

$$\dot{y} = -\alpha \left(2 + 1.8\beta \delta \left(\frac{1}{1 - \varepsilon_0 (1 - y)} - 1 \right) \right)$$

... we have a closed system of coupled equations.

$$\alpha = 6 \frac{1 - \varepsilon_0}{\varepsilon_0} \frac{D_{H_2O}^g}{d_p^2} \frac{\Delta c_{H_2O}^g}{\rho_l} \qquad \beta = \left(D_{H_2O}^g\right)^{-1/3} d_p^{1/2} v_g^{-1/6} \qquad \delta = d_p \left(\frac{\Delta p}{150L\mu_g}\right)^{1/2}$$

Homogeneous (1-D) Model for Drying in Biofilters

$$\dot{y} = -\alpha \left(2 + 1.8\beta \delta \left(\frac{1}{1 - \varepsilon_0(1 - y)} - 1 \right) \right)$$

- DEQ governs the drying dynamics
- no moistening → continuous decrease

Homogeneous (1-D) Model for Drying in Biofilters

What are the consequences for 2-D, 3-D models and the real world?

2-D Model for Drying in Biofilters

Implementation in COMSOL Multiphysics

Homogeneous 1-D Model (Mathematica) Homogeneous 2-D Model (COMSOL)

Model Validation

Elements: 2000 Fluid: P2-P1

PDE: Lagrange quadratic

DOF: 24 400

2-D Model for Drying in Biofilters

legend

0.1

water content:

Heterogeneous initial water distribution

Channeling: the gas flow is focused to dry regions, by-passing the still active parts of the filter medium

Relative small initial inhomogeneities can lead to a breakdown, due completely dried passages.

3-D Model for Drying in Biofilters

Heterogeneous initial water distribution

Modeling Drying in Biofilters → RESULTS

Channeling: the gas flow is focused to dry regions, by-passing the still active parts of the filter medium

Relative small initial inhomogeneities can lead to a breakdown, due completely dried passages.

On the Drying Dynamics in Biofilters → OUTLOOK

Experiments:

Modeling:

- 3-D model: investigation of inflow effects on drying
- incorporation of thermal effects (external & internal)
- incorporation of biological aspects
- ...
- identifying optimization strategies

Acknowledgements to:

BmBF – 'Forschung an Fachhochschulen'

You for your attention

