Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Induction Heating of Steel Billets for Control Design Purposes

J. Kapusta[1], J. Camber[1], G. Hulkó[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, STU Bratislava, Slovak Republic

This paper deals with numerical modeling of modular industrial induction heating of steel billets for hot forming applications using the COMSOL Multiphysics. A mathematical model based on Finite Element Method is presented. Design of induction heaters is constantly evolving and improving in terms of electrical and thermal efficiency. In recent years there is a trend of modular designed induction ...

Finite Element Analysis of a Fiber Bragg Grating Accelerometer for Performance Optimization

N. Basumallick[1], A. Ghosh[1], P. Biswas[1], K. Dasgupta[1], S. Bandyopadhyay[1]
[1]Fiber Optics Laboratory, Central Glass and Ceramic Research Institute, Kolkata, West Bengal, India

Sensitivity of a cantilever-mass based fiber Bragg grating (FBG) accelerometer can efficiently be tailored by altering the distance between the axis of the FBG sensor to the neutral axis of the cantilever. To accomplish that in general, a backing patch is used to mount the FBG on the cantilever. Use of finite element analysis to quantify the influence of the material constant (Young’s modulus) ...

Design and Analysis of Micro-Heaters for Temperature Optimization using COMSOL Multiphysics for MEMS Based Gas Sensor

V. S. Selvakumar[1], L. Sujatha[1]
[1]Rajalakhmi Engineering College, Chennai, Tamil Nadu, India

Micro-Heaters are the key components in sub-miniature micro-sensors, especially in gas sensors. The metal oxide gas sensors utilize the properties of surface adsorption to detect changes in resistance as a function of varying concentration of different gases [5]. To detect the resistive changes, the heater temperature must be in the requisite temperature range over the heater area. Hence the ...

Modelling of Pressure Profiles in a High Pressure Chamber using COMSOL Multiphysics

P. S. Rao[1], C. K. Chandra[1]
[1]Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India

High Pressure Processing (HPP) is a leading non-thermal food processing technology that is often cited as a major technological innovation in food preservation. Although it is very early to place this emerging technology among the list of breakthroughs in food processing, HPP has started to become a viable commercial alternative for pasteurisation of value added fruits, vegetables, meat, and ...

Design and Simulation of Piezoelectric Micropump and Microvalve based Drug Delivery System

D. Samajdar[1], P. Podder[1], A. Bhattacharyya[1], S. Sen[1]
[1]Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, WB, India

In the emerging field of MEMS microfluidics, micropumps and microvalves are two of the most important devices with a wide spectrum of applications such as programmable drug delivery systems, lab-on-a chip devices, µTAS (micro total analysis system), micro electric cooling applications etc. These microfluidic components are dominating the MEMS applications by virtue of their improved performance ...

Design and Simulation of Piezoelectric Ultrasonic Micro Motor

P. Patel[1], P. Manohar[1]
[1]Electrical and Electronics Department, M. S. Ramaiah Institute of Technology, Bangalore, Karnataka, India

Micro machined motors are a recent development in the domain of electrical machines. Compared to the conventional electromagnetic motors, micro machined motors offer high torque at lower speed, and are compact in nature. This makes them suitable for applications in the field of microsatellite, biomedical, micro robot, automobile, and auto focusing camera. The present work describes the design ...

Design and Simulation of MEMS based Micro Pressure Sensor

P. Acharya[1]
[1]B.V.Bhoomaraddi College of Engineerring & Technology, Hubli, Karnataka, India

The world is getting digitalized, demands for new and emerging technologies have reached its peak, and customer demands have taken a U-turn. To cope with such unique requirements many systems and system devices are into the market and one of such enhancing technology is MEMS. MEMS are systems of small size, light weight, enhanced performance and reliability finding widest of applications in ...

Simulation of Magnetic Flux Distribution of Stator and Rotor Coil of Superconducting Air Cored Wind Turbine Generator using COMSOL Multiphysics

A. Hazra[1], G. Konar[1]
[1]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

Wind energy is one of the fastest growing renewable energy sources for electricity generation over the past decade. The offshore installation of large-scale wind farms draws huge attention because of better wind profile. Direct drive synchronous wind turbine generators are now a global demand for light weight, compact, large scale wind turbine generators. Among various approaches in designing ...

Design and Simulation of Valveless Piezoelectric Micropump

L. Nayana[1], P. Manohar[1], S. Babu[1]
[1]Department of Electrical Engineering, Visvesvaraya Technological University, Bangalore, Karnataka, India

In this paper some discrete parts of a valveless piezoelectric micropump for drug delivery system is designed and simulated. The core components of the micropump are actuator unit that converts the reciprocating movement of a diaphragm actuated by a piezoelectric actuator into a pumping effect and Nozzle/diffuser elements that are used to direct the flow from inlet to outlet. Simulations are ...

Effect of Geometry of the Grooves on the Mixing of Fluids in Micro Mixer Channel

V. Ranjan[1], A. Kumar[1], G. Prakash[1], R. Mandal[1]
[1]Department of Mechanical Engineering, Indian School of Mines, Dhanbad, Jharkhand, India

Understanding the flow fields at the micro-scale is a key to develop methods of successfully mixing fluids for micro-scale applications. This paper investigates flow characteristics and mixing of three different geometries in micro-channel. A Circular groove micro mixer has been designed and simulated. One such channel is shown in Figure1. The geometry of the channels taken was rectangular with ...