See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

AC/DC Electromagneticsx

Finite Element Modeling of Remote Field Eddy Current Phenomenon

T. Jayakumar[1], B. Purnachandra Rao[2], C. K. Mukhopadhyay[3], B. Sasi[2], V. Arjun[5], S. Thirunavukkarasu[2]
[1]Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[3]EMSI Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN, India
[5]NDE Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India

Remote field eddy current (RFEC) technique is a method of detecting defects in ferromagnetic tubes. This is based on low frequency eddy current, which employs an exciter coil and a receiver coil separated by a characteristic distance. The exciter is fed with a low frequency sinusoidal ... Read More

Finite Element Modeling of a Pulsed Spiral Coil Electromagnetic Acoustic Transducer (EMAT) for the Testing of Plates

R. Dhayalan[1], A. Kumar[2], B. Purnachandra Rao[3], T. Jayakumar[2]
[1]Metallurgy and Material Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[3]Ultrasonic Measurements Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India

This paper presents numerical simulation of plate wave modes in thin stainless steel plates using a racetrack spiral coil electromagnetic acoustic transducer (EMAT), which works under the principle of acousto-elastic effect, called Lorentz force mechanism. EMATs are useful for non ... Read More

Simulation of the Electrode-Tissue Interface with Biphasic Pulse Train for Epi-retinal Prosthesis

S. Biswas[1], S. Das[2], M. Mahadevappa[2]
[1]Advanced Technology Development Center, Indian Institute of Technology, Kharagpur
[2]School of Medical Science and Technology, Indian Institute of Technology, Kharagpur

Retinitis Pigmentosa (RP) and Age-related Macular Degeneration (AMD) are diseases causing blindness in a large number of people. In this type of degenerative disease, mostly the photoreceptors are damaged. Thus attempts have been made to electrically stimulate the surviving inner retinal ... Read More

Studying Magnetohydrodynamic Effects in Liquid Metal Flow Under Transverse Magnetic Field Using COMSOL Multiphysics®

S. Sahu[1], R. Bhattacharyay[1], E. Rajendrakumar[1]
[1]Institute for Plasma Research, Bhat, Gandhinagar, India

Liquid metals are foreseen as a multipurpose coolant in fusion blanket systems. However, the strongly magnetic environment of the fusion reactor hinders the regular flow of the liquid metal. It interacts with transverse magnetic field and produces a Lorentz force opposing the flow, ... Read More

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on ... Read More

Modeling and Simulation of High Permittivity Core-Shell Ferroelectric Polymers for Energy Storage Solutions

N. Badi[1], R. Mekala[1]
[1]University of Houston, Houston, TX, USA

The dielectric properties of ferroelectric PVDF polymer embedded core-shell (Al-Al2o3) nanoparticle is simulated using COMSOL Multiphysics® software. Significant increase in electrical permittivity of the composite at percolation threshold (K = 2800) is achieved when compared to ... Read More

Simulating Experimental Conditions of the HIIPER Space Propulsion Device

A. Krishnamurthy[1], G. Chen[1], B. Ulmen[1], D. Ahern[1], G. Miley[1]
[1]University of Illinois at Urbana - Champaign, Urbana, IL, USA

The Helicon-Injected Inertial Plasma Electrostatic Rocket (HIIPER) is a two-stage electric propulsion system comprising of a helicon plasma source and an inertial electrostatic confinement (IEC) device for plasma production and acceleration, respectively. Several diagnostics such as a ... Read More

Fully Coupled FEM Modeling of the Swelling Behavior of Human Intervertebral Disc in Response to a Change in Chemical Environment

G. K. Mistri[1], K. J. Suthar[2]
[1]Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
[2]Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA

The swelling behavior of human intervertebral disc is strongly influenced by chemical changes in the surrounding environment. Swelling of IVD is governed by various physical phenomena, including chemical and electric potential based transport, electrical charge balance, and swelling due ... Read More

Modeling of Lorenz Force Flowmeter for Molten Metal Flow Application

T. V. Shyam[1], B. S. V. G. Sharma[1], Mrigendra Kumar Mrityunjaya [2], Dr. Ravinder Agarwal[2]
[1]Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India
[2]Thapar University, Patiala, India

Flow measurement of molten metals is a formidable task considering the hostile conditions. Many electromagnetic methods have been evolved for measurement of flow of conductive medium. The Lorenz force velocimetry is promising considering its non-intrusive nature. The Lorenz force ... Read More

Design and Optimization of Electrostatically Actuated Micromirror

Anna Thomas[1], Juny Thomas[1], Deepika Vijayan[1], K.Govardhan[2]
[1]VIT University, Sensor System Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India
[2]VIT University, MEMS & Sensor Division, School of Electronics Engineering, Vellore, Tamil Nadu, India

The microscopic size of MEMS devices accounts for strong coupling effects which arise between the different physical fields and forces. Micromirrors are essential parts of microswitches in fiber optic network telecommunication. They are usually 1 to 3 mm in size, fabricated from single ... Read More