Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

MEMS Electrostatic Acoustic Pixel

A. Arevalo [1], D. Conchouso [1], D. Castro [1], I. G. Foulds [2],
[1] Computer, Electrical, & Mathematical Sciences & Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2] The University of British Columbia, School of Engineering, Vancouver, BC, Canada

The growth of the electronics industry demand better components for the electronic systems. Such components need to be improve to keep up with the evolution of the digital era. The loudspeaker design has not been changed for almost a century [1-5]. The acoustic transducer is the last analogue component needed for a true digital audio system. We want to validate the feasibility of using an ...

Prediction of Noise Generated by Electromagnetic Forces in Induction Motors - new

M. K. Nguyen[1], R. Haettel[2], A. Daneryd[2]
[1]KTH, Stockholm, Sweden
[2]ABB Corporate Research,Västerås, Sweden

Induction motors, as any other industrial products, have to comply with various requirements on noise levels. Therefore, it is essential to use an appropriate prediction tool to verify and optimize the design of an induction motor with respect to the acoustic performances. The paper will focus on the prediction of the magnetic noise generated and radiated by a specific motor. The challenge is ...

Dynamic Structural Modelling of Wind Turbines Using COMSOL Multiphysics

C. Van der Woude, and S. Narasimhan
University of Waterloo, Waterloo, ON, Canada

This paper presents a study of a wind turbine subjected to wind and seismic loading, carried out using COMSOL Multiphysics. The dynamic properties and response of wind turbine structures are of interest, as recent developments in wind energy have led to the design and construction of increasingly large and flexible turbine structures. A typical turbine structure model was created in COMSOL and ...

FEM Simulation for ‘Pulse-Echo’ Performances of an Ultrasound Imaging Linear Probe

L. Spicci[1]
[1]Esaote SpA, Florence, Italy

Pulse-echo FEM simulation is seldom found in literature for ultrasound imaging array probes, since the complete modeling of such device is extremely complicated. Nevertheless, the 2D FEM described in the present work was successful, thanks to the following design procedure (see figure): Two piezoacoustic models were employed, one for transmission of the pressure wave into the acoustic domain, ...

Acoustical Design of Stethoscope for Improved Performance

C. Thiagarajan[1], Gururajan R.[2], A. H. Baig[2], Prema S.[3]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka India
[2]University of Southern Queensland, Toowoomba Qld 4350, Australia.
[3]RMK Engineering College, Chennai, Tamil Nadu, India

Stethoscope is in use for more than 200 years for medical diagnostics, especially for auscultation. Recently, the unprecedented growth in mobile technology revived the use of stethoscope for Telehealthcare. Digital or electronic stethoscopes are increasingly researched for use in Telehealthcare. This paper mainly focuses on the acoustical and multiphysics design aspects of the stethoscope for ...

A Multiphysics Approach to the Design of Loudspeaker Drivers

R. Magalotti [1]
[1] B&C Speakers, Bagno a Ripoli, Italy

Loudspeaker drivers are energy transducers: their main goal is to efficiently convert electrical energy to acoustic energy (sound), through the movement of mechanical parts. As such, they are prime candidates for the application of multiphysics methods and tools. The talk will outline the growing set of tools that COMSOL Multiphysics® software puts in the hands of the loudspeaker designer; ...

Finite Element Simulation of a Surface Acoustic Wave Driven Linear Motor

B. Behera [1], H. B. Nemade [1], S. Trivedi [1],
[1] Indian Institute of Technology Guwahati, Guwahati, Assam, India

The paper presents finite element simulation of a surface acoustic wave (SAW) linear motor. The function of SAW linear motor depends on the principle of friction drive provided by SAW propagating on a piezoelectric substrate. The SAW motor comprises of a slider driven by Rayleigh wave generated on a piezoelectric stator using an interdigital transducer (IDT) fabricated on surface of the stator. ...

Modeling Scattering from Rough Poroelastic Surfaces Using COMSOL Multiphysics®

A. Bonomo[1], M. Isakson[1]
[1]Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA

COMSOL Multiphysics® is used to address the problem of acoustic scattering from one-dimensional rough poroelastic surfaces. The poroelastic sediment is modeled following the Biot-Stoll formulation. The rough surfaces are generated using a modified power law spectrum. Both monostatic and bistatic scattering strengths are calculated. These results are compared with more conventional scattering ...

Simulation of Acoustic Energy Harvesting Using Piezoelectric Plates in a Quarter-Wavelength Straight-Tube Resonator

B. Li[1], J.H. You[1]
[1]Southern Methodist University, Dallas, TX, USA

An acoustic energy harvesting mechanism at low frequency (~200 Hz) using lead zirconate titanate (PZT) piezoelectric cantilever plates placed inside a quarter-wavelength straight-tube resonator has been studied using COMSOL Multiphysics 4.3 and compared with experimental data. When the tube resonator is excited by an incident wave at its acoustic eigenfrequency, an amplified acoustic resonant ...

Piezoelectric Surface Acoustic Wave (SAW) Device with Simulated Poling Condition

R. Xu [1], M. Guizzetti [1], K. Astafiev [1], E. Ringgaard [1], T. Zawada [1],
[1] Meggitt A/S, Kvistgaard, Denmark

FEM (Finite Element Method) modelling software such as COMSOL Multiphysics® can be a powerful tool for modelling the behavior and response of piezoelectric materials and devices [1]. Devices based on piezoelectric crystals are particularly well suited, because the polarization magnitude in crystals is predetermined and its orientation is defined by how it was cut with respect to the lattice ...