See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Hydrothemal Carbonization: A Renewable Alternative to Fossil Fuels and Respective Evaluation

P. Kladisios [1], A. Stegou [1], Z. Sagia [1],
[1] National Technical University of Athens, Athens, Greece.

Humanity is faced with an imminent energy crisis. The exponential growth of the human population and the consequential increase of the required energy on a global scale, the dramatic climate change and the exhaustibility of natural resources combined, force us to strive towards a ... Read More

Simulation of Compaction in Asphaltic Mixtures, Part I: Gyratory Compactor

A. Alipour [1], S. D. Mookhoek [1]
[1] Department of Structural Reliability, TNO, Delft, The Netherlands

A very important phase in construction of a pavement structure is the compaction process of the asphaltic mixture. It reflects a complex mechanism where many parameters are influential. These parameters are associated with the initial air voids content in the asphaltic mixture, aggregate ... Read More

2-D Modeling of CO2 Electrolysis Using Gas Diffusion Electrode Operate at Neutral pH and Mild Conditions

A. Monteverde Videla[1], N. Vasile[1], G. Saracco[1]
[1] Istituto Italiano di Tecnologia, Centre for Sustainable Future Technologies, Turin, Italy

CO2 capture and further conversion into valuable products can be a promising solution against global warming. Normally, CO2 conversion can be achieved by chemical methods, by photocatalytic and electrocatalytic reduction [1]. Specifically for electrocatalytic reduction of CO2, challenges ... Read More

Topology Optimization of a Gaseous Photoacoustic Spectroscopy Cell Using COMSOL Multiphysics®

R. Haouari [1], V. Rochus [2], L. Lagae [1], X. Rottenberg [2],
[1] Imec & KU Leuven, Leuven, Belgium
[2] Imec, Leuven, Belgium

It is known that photoacoustic spectroscopy shows the highest signal-to-noise ratio compared to other spectroscopy techniques. This is due to an orthogonal detection scheme: while exciting with light we monitor soundwaves. In gaseous phase, the use of an acoustic chamber called cell ... Read More

Impact of the Forces due to CLIQ Discharges on the New HL-LHC Beam Screen

M. Morrone [1], C. Garion [1],
[1] CERN, Geneva, Switzerland

In the framework of the high luminosity large hadron collider (HL-LHC) project, important upgrades will take place by 2024 including the installation of new superconducting magnets in which new beam screens will be placed. The beam screen is an octagonally shaped pipe inserted into the ... Read More

Modeling and Simulation of Hydrogen Generation in Membrane Reactor via Steam Octane Reforming

N. Ghasem [1], A. Y. Alraeesi [1],
[1] UAE Univeristy, Alain, United Arab Emirates

Various hydrocarbon compounds have been converted into pure hydrogen by using a catalyst and a palladium membrane in one reactor (PMR) in a one-step process where the reaction proceeds to almost complete conversion. Octane is converted into pure hydrogen using of a palladium membrane ... Read More

Using COMSOL Multiphysics® for Theoretical and Experimental Validation of Critical Properties of Composite Process

A. Häberle [1], P. Fideu [2], A. Herrmann [1],
[1] CTC GmbH, Stade, Lower Saxony, Germany
[2] Airbus Operations GmbH, Hamburg, Hamburg , Germany

During the manufacturing of CFRP components one of the most critical process steps is the vacuum bagging. In this process several layers of material are draped separately over complex part shapes. The specific properties of each material, which are needed for the process (i. e. breather, ... Read More

Green's Function Approach to Efficient 3D Electrostatics of Multi-Scale Problems

C. Roman [1], L. Schmid [1], L. Stolpmann [1], C. Hierold [1],
[1] ETH, Zurich, Switzerland

We present an efficient method to compute efficiently the general solution (Green's Function) of the Poisson Equation in 3D. The method proves its effectiveness when dealing with multi-scale problems in which lower dimensional objects, such as nanotubes or nanowires (1D), are embedded in ... Read More

Electron Trajectories in Scanning Field-Emission Microscopy

H. Cabrera [1],
[1] Swiss Federal Institute of Technology, Zurich, Switzerland

The Scanning Field Emission Microscopy (SFEM) is a novel technology similar to the better known Scanning Tunneling Microscopy (STM). In STM, electrons are exchanged between the outermost atom of a sharp tip and the outermost atom of a target over sub-nanometer distances by means of the ... Read More

Dynamic Simulation of a Coaxial Magnetic Gear Using Global ODE's and the Rotating Machinery, Magnetic Interface

M. Ostroushko [1], W. Zhang [1], W. M. Rucker [1],
[1] Institute of Theory of Electrical Engineering, University of Stuttgart, Stuttgart, Germany

The coaxial magnetic gear is a good alternative to classic mechanical gears. The magnetic gear has high mechanical durability, overload protection and lower noise, than a mechanical gear [1,2]. A static model of a magnetic gear [3,4] is used for simulation of the magnetic fields and ... Read More