See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

The Optical Properties of a Truncated Spherical Cavity Embedded in Gold

A. Pors[1], O. Albrektsen[2], S.I. Bozhevolnyi[2], and M. Willatzen[1]
[1]Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
[2]Institute of Sensors, Signals and Electrotechnics, University of Southern Denmark, Odense, Denmark

The use of plasmonic effects to dramatically enhance the electromagnetic field near the surface of a metallic nanostructured surface has grown into a large research area in the effort to take advantage of the surface enhanced field. In this paper the electromagnetic field near a nano ... Read More

COMSOL in the Academic Environment at USNA

K. Mcilhany[1], and R. Malek-Madani[2]
[1]Department of Physics U. S. Naval Academy, Annapolis, Maryland, USA
[2]Department of Mathematics, U. S. Naval Academy, Annapolis, Maryland, USA

The U.S. Naval Academy has used COMSOL as a research tool for many years. Academic usage of COMSOL for student use has only begun in the last five years. Student involvement comes in four types, course-wide usage, focused course related work, student projects and semester-long research ... Read More

Modeling the Bacterial Clearance in Capillary Network Using Coupled Stochastic-Differential and Navier-Stokes Equations

A. Atalla[1], and A. Jeremic[1]
[1]McMaster University, Hamilton, Ontario, Canada

The capillary network is a complex-interconnected structure. A single blood cell traveling from the arteriole to a venule via a capillary bed passes through, on average, 40−100 capillary segments. The cardiovascular systems responsible of delivering blood to the tissue under sufficient ... Read More

An Acoustical Finite Element Model of Perforated Elements

P. Bonfiglio[1][2] and F. Pompoli[1][2]
[1]Materiacustica S.r.l., Ferrara, Italy
[2]Engineering Department, University of Ferrara, Ferrara, Italy

The present work deals with a numerical investigation of resonating systems used for noise control applications. In literature one can find analytical models based on fluiddynamics concepts for evaluating losses occurring across the holes of the perforates. In the paper an acoustical ... Read More

Analysis of Sound Propagation in Lined Ducts by Means of a Finite Element Model

D. Borelli[1] and C. Schenone[1]
[1]DIPTEM, University of Genova, Genova, Italy

The present paper describes the results of a Finite Element Model used to analyze sound propagation in lined ducts. By means of a numerical model it was possible to predict the insertion loss inside rectangular lined ducts in a frequency range from 250 Hz to 4000 Hz. The model was ... Read More

Temperature Distribution in High Voltage Dummy Cable

G.Y. Sun[1], O. Sekula[1], and C. Albanbauer[1]
[1]Brugg Kabel AG, Brugg, Switzerland

A 2D model of coupled electricthermal application is used to calculate the temperature distribution in a high voltage dummy cable laid in free air, where no high voltage is applied. Resistive loss heats the cable while the surrounding air cools it down. The steady-state condition is ... Read More

An All-Purpose Full-Vectorial Finite Element Model for Arbitrarily Shaped Crossed-Gratings

G. Demésy[1], F. Zolla[1], A. Nicolet[1], and M. Commandré[1]
[1]Institut Fresnel, Université Aix-Marseille III, École Centrale de Marseille, France

We demonstrate the accuracy of the Finite Element Method (FEM) to characterize an arbitrarily shaped crossed-grating in a multilayered stack illuminated by an arbitrarily polarized plane wave under oblique incidence. To our knowledge, this is the first time that 3D diffraction ... Read More

Fundamental Three Dimensional Modeling and Parameter Estimation of a Diesel Oxidation Catalyst for Heavy Duty Trucks

A. Holmqvist[1] and C.U.I. Odenbrand[1]


[1]Department of Chemical Engineering, Faculty of Engineering, LTH, Lund University, Lund, Sweden

Mathematical optimization can be used as a computational engine to generate the best solution for a given problem in a systematic and efficient way. In the context of monolithic converter systems, the parameter estimation problem (or inverse problem) is solved using Partial Differential ... Read More

Study of an Electroacoustic Absorber

A-S. Moreau[1], H. Lissek[1], and R. Boulandet[1]
[1]EPFL-STI-IEL-LEMA, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

In this paper, the underlying concept of electroacoustic absorbers is studied with the help of Comsol Multiphysics® Acoustics Module. Among the different ways to obtain variable acoustic properties on an electroacoustic transducer's voicing face, there is the shunting of the ... Read More

Coupling Miscible Flow and Geochemistry for Carbon Dioxide Flooding into North Sea Chalk Reservoir

B. Niu[1], W. Yan[1], A.A. Shapiro[1], and E.H. Stenby[1]

[1]Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

As an effective method to cope with green-house gas emission, and to enhance oil recovery, injection of carbon dioxide into oil reservoirs has obtained increasing attentions. The flooding process involves complex phase behavior among oil, brine and CO2, and geochemical reaction between ... Read More