Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Passive Cooling of Power Electronics: Heat in the Box

M. Berger[1], W. Schernus[1]
[1]West Coast University of Applied Sciences, Heide, Germany

Results presented are a contribution to the design of a 5kW-DC-AC-converter for applications in forklifts. The device is located in a closed environment and entirely operated with passive cooling. Due to concurrent engineering approach and environmental conditions correct prediction of absolute temperature values by simulation was crucial. Heat sinks have been modeled properly and a thermal ...

Turbulent Bounded Flows for Oil & Gas Industry with COMSOL CFD Module

A. Fadel[1], G. Fontana[1]
[1]Isoil Impianti, Albano S. Alessandro, Italy

Industrial applications of fluid mechanics can require to satisfy necessities as diverse as legal norms, optimization requirements and manufacturing constraints. Therefore a Computational Fluid Mechanics software often becomes a must in the development of new devices or the improvement of older ones. Besides the legalistic aspect (such as the European Pressure Equipment Directive), several steps ...

Development of a Multiphase, Multispecies Droplet Evaporation Model for Optimization of Desiccation Preservation Techniques

A. Sinkevich[1], S. Bhowmick [1], M. Raessi[1]
[1]University of Massachusetts Dartmouth, North Dartmouth, MA, USA

Biopreservation deals with the protection and storage of complex biologics such as proteins, lipids, and recently, mammalian cells. One preservation method, known as lyopreservation, involves placing a biologic inside a water droplet with some type of sugar excipient (sucrose, trehalose, etc.) and drying the solution convectively. We are currently developing a model that couples the two-phase ...

Modelling of the Wool Textile Finishing Processes

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Within wool textile industries, a very important role is played by the so-called finishing processes, in which the textile substrate undergoes steam treatments to achieve the desired level of stabilisation and appearance. Process parameters, namely temperature and moisture content, are known only at the beginning of the process but not in the textile material being treated, where the actual ...

Modeling Ferrofluid Flow in an Annular Gap Moving with Reciprocating Shaft

Y. He[1], R. Nilssen[1]
[1]Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway

Ferrofluids have been successfully used in the seals for rotary shafts, but few studies focus on the reciprocating motion seals. Since the completely different operational regimes, previous experiences on the rotary motions could not be directly applied on the cases for reciprocating shafts. In this study, we present a simplified model to describe the process that a shaft linearly moving in a ...

Full System Modeling and Validation of the Carbon Dioxide Removal Assembly - new

R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes ...

Simulating the Flow of Native Silk Feedstocks In Vivo

J. Sparkes [1],
[1] Natural Materials Group, Dept of Materials Science and Engineering, The University of Sheffield, Sheffield, UK

The ability to artificially produce silk fibers has great commercial, industrial and scientific implications. Much has been made of their remarkable mechanical properties but few have considered how they are imparted on the initially liquid silk feedstock.1 I am exploring how silk duct geometry affects the fibers produced as by understanding the flow conditions within the model, and comparing ...

Modeling Contact Line Dynamics in Evaporating Menisci

J. Plawsky[1], A. Chatterjee[1], and P.C. Wayner Jr.[1]
[1]Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA

The Constrained Vapor Bubble is a fundamental fluid mechanics experiment that is scheduled to run aboard the International Space Station starting in August 2009. The experiment is focused on looking at evaporation and condensation processes at the contact line, where vapor, liquid and solid meet. Our goal is to understand how processes that occur on the macroscale affect the transport processes ...

Deep Desulfurization of Diesel Using a Single-Phase Micro-Reactor

G. Jovonavic[1], J. Jones[1], and A. Yokochi[1]
[1]School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA

This paper describes the benefits of computational fluid dynamics in the development of a microreactor used in the desulfurization of aromatic compounds. It is crucial to verify diffusion and extinction coefficients to ensure accurate simulation results prior to experiments. COMSOL Multiphysics was used to model the behavior of all of the possible species present and reactions that may occur.

Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults

E. Roland[1], M. Behn[2], and G. Hirth[3]
[1]MIT/WHOI Joint Program, Woods Hole, MA, USA
[2]Woods Hole Oceanographic Institution, Woods Hole, MA, USA
[3]Brown University, Providence, RI, USA

To investigate the thermal-mechanical behavior of oceanic transform faults, we calculate 3-D steady-state incompressible mantle flow and heat transport using COMSOL Multiphysics. Our model incorporates a nonlinear viscous rheology with a visco-plastic approximation to simulate lithospheric brittle failure. We incorporate the effects of hydrothermal circulation and hanges in frictional ...