Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Air Flow Characteristics Inside an Industrial Wood Pallet Drying Kiln

A-G. Ghiaus, M-A. Istrate, and A-M. Georgescu
Technical University of Civil Egineering, Bucharest, Romania

Analysis and optimization of air flow distribution inside drying kiln systems contribute to the improvement of the final product quality. The present study reports on the threedimensional numerical solution of air flow within a drying kiln enclosure. The air flow field is examined in different configurations and operation conditions. Depending on the off/on switched fans, we obtain various air ...

Numerical Implementation Of A Multivariable Thermomechanical Model For Unsaturated Bentonite

V-M. Pulkkanen, and M. Olin
VTT Technical Research Centre of Finland, Espoo, Finland

A compacted bentonite clay buffer is planned to be used as a part of the engineered barrier system in the KBS-3 concept for the disposal of spent nuclear fuel. Simulations together with experimental studies are needed to ensure that bentonite fulfills its safety functions in the concept. In this paper, one type of bentonite model, namely a thermomechanical model developed by Jussila, is ...

Simulation of the Mechanical Stability of Inkjet-Printed Hierarchical Microsieves

S.F. Jahn[1,3], S. Ebert[2], M. Hackert[1], W.A. Goedel[2], R.R. Baumann[3], and A. Schubert[1,4]
[1]Chemnitz University of Technology, Chair Micromanufacturing Technology, Germany
[2]Chemnitz University of Technology, Physical Chemistry, Germany
[3]Chemnitz University of Technology, Professorship for Digital Printing and Imaging, Germany
[4]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Porous membranes with pore sizes in the micrometer scale are required in many micro systems dedicated to biological and chemical applications. If their thickness is in the same dimension like the pore diameter they are called microsieves. On the one hand, a thin membrane guarantees a small flow resistance but on the other hand the mechanical strength is reduced. We developed a process which ...

Using Optical Flow Tracing of MRI Flow Artifacts to Validate CFD Findings

R. H. Lauridsen, S. Ringgaard, and S. Alberg Thrysøe
MR-Center
Aarhus University Hospital
Aarhus, Denmark

The aim of this study is to use tracking of flow artifacts in Magnetic Resonance Imaging of fluids to validate CFD. Phase Contrast MRI will also be used for comparison. The correlation between flow of the fluid and movement of the artifacts is investigated using an aorta flow phantom, which is modeled from a human aorta and printed in thermo plastic. An Optical Flow algorithm is used to ...

Thermo-Fluidic Impulse Response and TOF Analysis of a Pulsed Hot Wire

O. Ecin, M. Malek, B. J. Hosticka, and A. Grabmaier
Chair for Electronic Components and Circuits
University of Duisburg-Esse
Duisburg, Germany

In this work the authors report on a CFD simulation of a pipe flow model. Fluid mechanics are here combined with heat transfer phenomena. To create a mathematical model of a pulsed hot wire system i.e., the thermo-fluidic impulse response of a pulsed hot wire, a simulation model is going to be analyzed which describes the impulse response according to the physics from thermodynamics. The ...

Validation of a Simplified Model to Determine the Long-Term Performance of Borehole Heat Exchanger Fields With Groundwater Advection

S. Lazzari[1], A. Priarone[2], and E. Zanchini[1]
[1]University of Bologna, Department DIENCA, Bologna, Italy
[2]University of Genova, Department DIPTEM, Genova, Italy

Finite element simulations performed through COMSOL Multiphysics are used to study the long-term performance of BHE fields placed in a water-saturated porous soil subjected to groundwater movement. The heat transfer problem is written in a dimensionless form and the long-term time evolution of the mean surface temperature of the BHEs, sketched as cylindrical heat sources subjected to a regular ...

Muscle-Electrode Interface Simulation

A. Altamirano, C. Toledo, A. Vera, R. Muñoz, and L. Leija
Centro de Investigacion y Estudios Avanzados
Instituto Politecnico Nacional
Mexico

In this article, the aim is to study different types and forms of electromyography (EMG) electrodes, for bipolar configuration, and the electric interface with muscle phantom. COMSOL Multiphysics allows modeling shapes and contact surfaces. Surface and needle electrodes will be modeled. A number of different trials and combinations will be presented; exploring different geometric shapes and ...

Deriving Correction Factors for a Primary Standard for Radiation Dosimetry

R. Tosh, and H. Chen-Mayer
NIST
Gaithersburg, MD

Accurate metrology of radiotherapeutic absorbed dose to water requires assessing the radiation induced temperature change. The most direct method for doing this is water calorimetry, for which the established technique involves the use of slender thermistor probes that are sealed within a glass vessel containing high-purity water. The probes and vessel perturb the radiation field, via ...

Lab on Chip for Detection of E.coli Cell Using Capacitance Modulation

S. Gupta
Visvesvaraya National Institute of Technology
Nagpur
Maharashtra, India

In this paper , lab on chip (LoC) is proposed to detect an E.coli bacteria in water. LoC is a chip of size ranges from millimeter to few centimeter in which we can combine laboratory functions. The main components in lab on chip are micro fluidic structure, functionalized sensing block , measurements (interface)system. The microfluidic structure and sensing block is to be simulated in COMSOL ...

Optimization of the Design of a GEM Tracker Based on Gas Flow Simulations with COMSOL

V. De Smet[1], V. Bellini[2], E. Cisbani[3], F. Noto[2], F. Mammoliti[2], C. M. Sutera[4], and M. Mangiameli[4]
[1]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[2]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; INFN – Sezione di Catania, Catania, Italy
[3]INFN – Sezione di Roma - Sanità Group, Roma, Italy; Italian National Institute of Health, Roma, Italy
[4]INFN - Sezione di Catania, Catania, Italy

A Computational Fluid Dynamics study has been performed for a Gas Electron Multiplier (GEM) detector of high energy charged particles, currently under development as part of a new tracker of the high luminosity spectrometers in Hall A at Jefferson Lab. By gradual modifications of the geometry simulated in COMSOL, the design of the frame separating two GEM foils has been optimized with the aim ...

3161 - 3170 of 3390 First | < Previous | Next > | Last