Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of the Earth's Electromagnetic Clearance System (DEMETER)

J. P. Pothin [1], N. Gosselin [1],
[1] Nexter Systems, France

DEMETER is a magnetic field replicator. This system is designed to deceive anti tank mines. Numerical simulation (using COMSOL Multiphysics® software) allows to indicate DEMETER's performance in various environment and various configurations. The study of the magnetic field provide also an overview of mine-clearing tools disturbances on the field generated by DEMETER.

Studies of Arc Volcanism and Mantle Behavior in Subduction Zones

C. Lee [1]
[1] Department of Earth and Environmental Sciences, Chonnam National University, South Korea

Injection of 3-D hot plume blob develops localized and short-term increases in slab surface temperatures, consistent with the Abukuma adakite, Northeast Japan. 3-D mantle flow develops trough of the lowered slab surface temperatures implying along lowered slab surface temperatures, implying along-arc variations in arc variations in volcanism. COMSOL Multiphysics using the CFD module allows ...

Interpretation of Measurements with Novel Thermal Conductivity Sensors Suitable for Space Applications

N. I. Kömle[1], G. Kargl[1], E. Kaufmann[2], J. Knollenberg[2], and W. Macher[1]
[1]Space Research Institute, Austrian Academy of Sciences, Graz, Austria
[2]DLR Institut für Planetenforschung, Berlin, Germany

Thermal conductivity of near surface soil layers is a key parameter for understanding the energy balance of planetary bodies. To measure this property, heated needle sensors are frequently used in field and laboratory applications. To adapt this type of sensors for application on space missions, various modifications have to be implemented. An example for such a modified sensor is the so ...

Numerical Investigation of Electroosmotic Flow in Convergent Divergent Micronozzle

V. Gnanaraj[1], V. Mohan[1], and B. Vellaikannan[1]
[1]Thiagarajar College of Engineering, Madurai, Tamilnadu, India

A fundamental understanding of the transport phenomena in microfluidic channels is critical for systematic design and precise control of such miniaturized devices towards the integration and automation of Lab-on- a-chip devices. Electroosmotic flow is widely used to transport and mix fluids in microfluidic systems. Electroosmotic transport in convergent divergent micronozzle is significant in ...

Helium Two-Phase Flow in a Thermosiphon Open Loop

Bertrand Baudouy
Head of the Cryogenics R&D Group, CEA Saclay, France

Outline of presentation: Missions of SACM (Accelerator, Cryogenics and Magnetism Division) Context : The Large Hadron collider at CERN, Geneva Cooling large superconducting magnet Thermosiphon open loops for cooling superconducting magnets Experimental facility and ranges of the study COMSOL Multiphysics Modeling Results with COMSOL Multiphysics Comparison with experimental ...

Hydro-Mechanical Response of Sedimentary Rocks of Southern Ontario to Past Glaciations

O. Nasir[1], M.Fall[1], T.S. Nguyen[1,2], and E. Evgin[1]
[1]Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
[2]Canadian Nuclear Safety Commission (CNSC), Ottawa, Ontario, Canada

The last glacial cycle in the Northern Hemisphere started approximately 120,000 year ago. During that cycle, Southern Ontario was buried under a continental ice cap, with a maximum thickness of up to 3km. The ice cap retreated approximately 10,000 years ago. The COMSOL Multiphysics code is used to model the physical processes of the impact of past glaciations on the evolution of hydraulic system ...

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

Interfacing Continuum and Discrete Methods: Convective Diffusion of Microparticles and Chemical Species in Microsystems

J. Berthier
CEA-LETI, Department of Biotechnology, Grenoble, France

Convective transport of macromolecules or micro and nanoparticles in microsystems are usually predicted by solving the Navier Stokes equations for the carrier fluid and a concentration equation for the diffusing species. In the case of isolated particles or complicated geometries with extremely small apertures or microporous material, the concentration equation maybe replaced by a Monte Carlo ...

Effect of Local Deformation on the Emission Energy of  Quantum Dots in a Flexible Tube

S. Kiravittaya[1], P. Cendula[2], A. Rastelli[2], and O. Schmidt[2]
[1]Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany
[2]Institute for Integrative Nanosciences, Dresden, Germany

Strain induced by local deformation of a flexible micrometer-sized semiconductor tube is quantified by modeling a ball pressing on the tube wall. By changing the pressing condition, we are able to change the strain state of the tube wall incorporating self-assembled quantum dots (QDs) in the wall. The QD emission energy is calculated in COMSOL® by solving the Schrödinger wave equation ...

Magnetic Ratchet

A. Auge, F. Wittbracht, A. Weddemann, and A. Hütten
Department of Physics, University of Bielefeld, Germany

Transport phenomena in spatially periodic magnetic systems, in particular the directed transport of magnetic beads in a so called magnetic ratchet (Brownian motor) are considered. Simulations are carried out to test and optimize this system, where the Smoluchowski equation with flux terms for the magnetic and gravitational force is used. Furthermore, experiments are carried out to verify the ...

3161 - 3170 of 3390 First | < Previous | Next > | Last