Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of Thermo-Electrical and Mechanical Coupling During Densification of a Polycrystalline Material Using COMSOL

F. Mechighel[1,2,3], B. Pateyron[1], M. El Ganaoui[1], and M. Kadja[3]
[1]CNRS SPCTS UMR 6638, Universite de Limoges, France
[2]Département de Génie Mécanique, Universite de Annaba, Algerie
[3]Département de Génie Mécanique, Universite de Constantine, Algerie

Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulation of sintering kinetics and therefore makes it possible to obtain polycrystalline materials (ceramic or metallic) with tailored microstructures. A numerical simulation of the electrical, thermal and mechanical coupling during SPS is performed. Equations for conservation for ...

Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion

D. Dalle Nogare[1] and P. Canu[1]

[1]Department of Chemical Engineering Principles and Practice, University of Padova, Padova, Italy

This work investigates the effects of boundary conditions on the species profiles in heterogeneous catalysis, with low Péclet systems. Hydrogen combustion in Helium was chosen because of the high diffusivities. Furthermore, already at T=300°C over a Pt catalyst, kinetics is very fast and the composition gradients at the inlet extremely steep. The issue is analyzed with 1D models, ...

Optimisation Of Filament Geometry For Gas Sensor Application

S. Gidon, M. Brun, and S. Nicoletti
CEA Minatec, Optronic Department, Grenoble, France

Monitoring of indoor CO2 concentration is of particular interest to detect room occupancy in order to optimise power consumptions of building. One technological approach is to use optical detection using specific absorption lines of CO2 molecules in the infrared domain close to 4.2 μm. Key features for a wider use in public and private buildings are power consumption and price. Such optical ...

Mass Transfer From a Rotating Cylinder in a Confined Gas Flow

N. Jand[1], A. Scarpetta[2], and M. Stefano[2]
[1]Chemical Engineering Department, University of L’Aquila, L’Aquila, Italy
[2]Faculty of Engineering, University of L'Aquila, L’Aquila, Italy

The modeling of sublimation form a rotating cylinder of solid naphthalene in a confined vessel has been performed by coupling the model of incompressible Newtonian fluid flow with the model of the dilute solutions. Preliminary a 2D axisymmetric system with swirl flow function for laminar and turbulent regimes has been considered. In the turbulent regime the RANS model with default parameter ...

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

Simulation of the Degradation of Methyl Red by Gliding Arc Plasma

S. Cavadias [1], B. Trifi [2], S. Ognier[1], and N. Bellakhal[3]
[1]Laboratoire de Génie des Procédés Plasma et Traitement de Surface, Ecole Nationale Supérieure de Chimie de Paris, Université Pierre et Marie Curie, Paris, France
[2]Laboratoire de Chimie Analytique et Electrochimie, Département de Chimie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
[3]Département de Chimie et de Biologie Appliquées, Institut National des Sciences Appliquées et de Technologie, B.P. N°676, 1080 Tunis Cedex, Tunis, Tunisie

The use of plasmas for the treatment industrial effluents provides a new alternative to the decontamination of wastewater. The strong oxidizing species (O,O3, OH) generated by the plasma, at room temperature, can oxidise organic pollutants present in the water. Our simulation deals with the degradation of methyl red by a Glidarc humid air plasma producing active species, mainly OH, that can ...

Experimental and Numerical Study of Microbial Improved Oil Recovery in a Pore Scale Model by using COMSOL

M. Shabani Afrapoli, L. Shidong, S. Alipour , and O. Torsaeter
Department of Petroleum Engineering and Applied Geophysics
Trondheim, Norway

A number of visualization experiments are carried out at the laboratory temperature with oil, brine and bacteria suspension for evaluating the performance of MIOR in a glass micromodel. The observations show the effects of bacteria on remaining oil saturation. The interfacial tension reduction, wettability alteration and flow pattern changes are recognized as active mechanisms. COMSOL ...

Multiphysics Modeling of an Ion Mobility Spectrometer

T. Adams, and J. Fulton

Naval Surface Warfare Center, Crane Division, Crane, IN, USA

In Eiceman and Karpas’s book Ion Mobility Spectroscopy (2005), they define Ion Mobility Spectroscopy (IMS) as "the principles, methods, and instrumentation for characterizing chemical substances on the basis of velocity of gas-phase ions in an electric field." The production of the electric field and signal processing components is relatively inexpensive compared to other analytical ...

Two-Dimensional Modelling of a Non-Isothermal PrOx Reactor with Water Cooling for Fuel Cell Applications

H. Beyer[1], B. Schönbrod[1], C. Siegel[1], M. Steffen[1], and A. Heinzel[1][2]
[1]Zentrum für BrennstoffzellenTechnik GmbH, Duisburg, Germany
[2]Institut für Energie und Umweltverfahrenstechnik, University of Duisburg-Essen, Duisburg, Germany

This work treats of a preferential oxidation reactor, which is simulated by a two-dimensional axial symmetric model. The reactor serves as purification of hydrocarbon reformat and converts the CO mole fraction from up to 1 % in the feed gas down to a few ppm at the outlet to deliver a hydrogen rich feed gas for a PEM fuel cell. The model combined chemical kinetic expressions, which were ...

Analysis of TAP Reactors Procedures Using COMSOL

S. Pietrzyk[1], and G.S. Yablonsky[2]
[1]Unité de Catalyse et Chimie du Solide, Université des Sciences et Technologies de Lille, France
[2]Parks College, Saint Louis University, St. Louis, MO, USA

TAP (Temporary Analysis of Products) reactors are powerful instruments to study the kinetics of catalytic reactions. Their basic principle, exposition of evacuated solids of interest to narrow pulses containing very small amounts of gases, and measuring the concentrations of outgoing molecules permits to study practical catalysts under the conditions approaching those of molecular beam ...