See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

AC/DC Electromagneticsx

Sensitivity Analysis of Different Models of Piezoresistive Micro Pressure Sensors

S. Meenatchisundaram[1], S. M. Kulkarni[2], S. Bhat
[1]Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India.
[2]Department of Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka, India.

Piezoresistive pressure sensors have received much attention over the years because of low cost, simple measurement techniques, etc. There is a challenge in design with respect to appropriate positioning, shape and temperature compensation. Different models of piezoresistive pressure ... Read More

Application of the Focused Impedance Method (FIM) to Determine the Volume of an Object within a Volume Conductor

M. A. Kadir[1], S. P. Ahmed[2], G. D. Al Quaderi[3], R. Rahman[2], K. Siddique-e Rabbani[1]
[1]Department of Biomedical Physics & Technology, University of Dhaka, Dhaka, Bangladesh
[2]Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh
[3]Department of Physics, University of Dhaka, Dhaka, Bangladesh

Focused Impedance Method (FIM), a new technique of electrical impedance measurement having high sensitivity in the central region, can sense the change in transfer impedance of an object embedded at a shallow depth within a volume conductor of unchanging background conductivity, using ... Read More

Simulation of a Capacitive Sensor for Wear Metal Analysis of Industrial Oils

P. Venkateswaran[1], R. Minasamudram[1], P. Agrawal[2]
[1]Siemens Technology and Services Pvt. Ltd, Bangalore, Karnataka, India
[2]Indian Institute of Technology - Bombay, Mumbai, Maharashtra, India

Lubricant oil is used to ensure proper functioning of industrial machinery such as turbines, gears, bearings and compressors. Oil analysis is used to detect and quantify the presence of wear metals and other contaminants in the lubricant of oil wetted systems, by sensing the change in ... Read More

Finite Element Modeling of Remote Field Eddy Current Phenomenon

T. Jayakumar[1], B. Purnachandra Rao[2], C. K. Mukhopadhyay[3], B. Sasi[2], V. Arjun[5], S. Thirunavukkarasu[2]
[1]Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India
[3]EMSI Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, TN, India
[5]NDE Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN, India

Remote field eddy current (RFEC) technique is a method of detecting defects in ferromagnetic tubes. This is based on low frequency eddy current, which employs an exciter coil and a receiver coil separated by a characteristic distance. The exciter is fed with a low frequency sinusoidal ... Read More

Finite Element Modeling of a Pulsed Spiral Coil Electromagnetic Acoustic Transducer (EMAT) for the Testing of Plates

R. Dhayalan[1], A. Kumar[2], B. Purnachandra Rao[3], T. Jayakumar[2]
[1]Metallurgy and Material Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[3]Ultrasonic Measurements Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India

This paper presents numerical simulation of plate wave modes in thin stainless steel plates using a racetrack spiral coil electromagnetic acoustic transducer (EMAT), which works under the principle of acousto-elastic effect, called Lorentz force mechanism. EMATs are useful for non ... Read More

Simulation of the Electrode-Tissue Interface with Biphasic Pulse Train for Epi-retinal Prosthesis

S. Biswas[1], S. Das[2], M. Mahadevappa[2]
[1]Advanced Technology Development Center, Indian Institute of Technology, Kharagpur
[2]School of Medical Science and Technology, Indian Institute of Technology, Kharagpur

Retinitis Pigmentosa (RP) and Age-related Macular Degeneration (AMD) are diseases causing blindness in a large number of people. In this type of degenerative disease, mostly the photoreceptors are damaged. Thus attempts have been made to electrically stimulate the surviving inner retinal ... Read More

Studying Magnetohydrodynamic Effects in Liquid Metal Flow Under Transverse Magnetic Field Using COMSOL Multiphysics®

S. Sahu[1], R. Bhattacharyay[1], E. Rajendrakumar[1]
[1]Institute for Plasma Research, Bhat, Gandhinagar, India

Liquid metals are foreseen as a multipurpose coolant in fusion blanket systems. However, the strongly magnetic environment of the fusion reactor hinders the regular flow of the liquid metal. It interacts with transverse magnetic field and produces a Lorentz force opposing the flow, ... Read More

External Field Induced Flow Patterns in Microscale Multiphase Flows

D. Bandyopadhyay[1], A. Sharma[1], S. Timung[1], V. Tiwari[1], T. K. Mandal[1]
[1]Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

The study of multiphase flows inside the microfluidic devices has received much attention recently because of its applications in heat and mass transfer, mixing, microreaction, emulsification and most importantly in MEMS and lab-on-a-chip. We study the influence of an electric field on ... Read More

Modeling and Simulation of High Permittivity Core-Shell Ferroelectric Polymers for Energy Storage Solutions

N. Badi[1], R. Mekala[1]
[1]University of Houston, Houston, TX, USA

The dielectric properties of ferroelectric PVDF polymer embedded core-shell (Al-Al2o3) nanoparticle is simulated using COMSOL Multiphysics® software. Significant increase in electrical permittivity of the composite at percolation threshold (K = 2800) is achieved when compared to ... Read More

Simulating Experimental Conditions of the HIIPER Space Propulsion Device

A. Krishnamurthy[1], G. Chen[1], B. Ulmen[1], D. Ahern[1], G. Miley[1]
[1]University of Illinois at Urbana - Champaign, Urbana, IL, USA

The Helicon-Injected Inertial Plasma Electrostatic Rocket (HIIPER) is a two-stage electric propulsion system comprising of a helicon plasma source and an inertial electrostatic confinement (IEC) device for plasma production and acceleration, respectively. Several diagnostics such as a ... Read More